A Comprehensive Pedestrian and Bicycle Master Plan
For The Town of Brighton, New York

December 2012
GENESEE TRANSPORTATION COUNCIL

Richard Perrin, Executive Director
Robert Torzynski, Program Manager

TOWN OF BRIGHTON

William Moehle, Supervisor
Jason DiPonzio, Town Board
Louise Novros, Town Board
James Vogel, Town Board
Christopher Werner, Town Board

BIKEWALK BRIGHTON TASK FORCE

Richard Aslin
Monica Bays
Richard DeSarra
Cheryl Lee
Aileen Maguire Meyer
Douglas Raynor
Peter Siegrist

DEPARTMENTS OF TRANSPORTATION

Steve Beauvais, New York State
Scott Leathersich, Monroe County

EDR COMPANIES

274 North Goodman Street
Rochester, NY 14620
T 585.271.0040
http://www.edrcompanies.com

SPRINKLE CONSULTING, INC.

18115 U.S. Hwy 41N, Suite 600
Lutz, FL 33549
T 813.949.7749
http://www.sprinkleconsulting.com

SRF & ASSOCIATES

3495 Winton Place
Building E, Suite 110
Rochester, NY 14623
T 585.272.4660
http://www.srfa.net

Financial assistance for the preparation of this report was provided by the Federal Highway Administration (FHWA) through the Genesee Transportation Council (GTC). The Town of Brighton is responsible for its content and the views and opinions expressed herein do not necessarily reflect the official views or policy of the U.S. Department of Transportation. GTC assures that no person shall, on the grounds of race, color, national origin, disability, age, gender, or income status, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity. GTC further assures every effort will be made to ensure nondiscrimination in all of its programs and activities, whether those programs and activities are federally funded or not.
TABLE OF CONTENTS

A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

1. Executive Summary

2. Introduction

- Background and Purpose of the Plan
- Community Outreach and Public Input
- Relationship to Other Plans and Studies
- Parallel Projects

3. Active Transportation Benefits

- Environmental
- Health
- Economic
- Social

4. Existing Conditions Assessment

- Residents
- Town Characteristics
- Existing Pedestrian Conditions
- Existing Bicycling Conditions
- Safety Evaluation
- Shared-Use Trails
- Priority Intersections
- Existing Programs and Policies

5. Peer City Review Summary

- Peer City Review Summary
- Highlights

6. Alternatives Toolbox

- Cost Impacts
- User Impacts
- Sustainability Impacts
- On-Street Alternatives
- Off-Street Alternatives

7. Recommendations

- Overall Network Recommendations
- Sidewalk Additions
- Priority Intersection Improvements
- On-Street Bicycle Facility Improvements
- Bicycle Facilities at Destinations
- Bicycle Boulevards
- Monroe Avenue Road Diet
- Concept Projects
- Programs and Policies to Encourage Bicycle and Pedestrian Activity

8. Implementation

- Priorities and Phasing
- Cost Estimates
- Potential Funding Sources
- Next Steps

Prepared by **edr Companies** in association with **Sprinkle Consulting** and **SRF & Associates**
LIST OF FIGURES

A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Existing Conditions: Inter-Municipal Active Transportation Network	1
Existing Conditions: Locations of Students Walking to School by District	2
Existing Conditions: Brighton Central School District: Bicycle Facilities Inventory	3
Existing Conditions: Destinations	4
Existing Conditions: Destinations and Distances	5
Existing Conditions: System Map of Sidewalks	6
Existing Conditions: Sidewalk Network Gap Presence	7
Existing Conditions: Pedestrian Level of Service	8
Existing Conditions: Pedestrian LOS Adjacent to Schools	9
Existing Conditions: Bicycle Level of Service	10
Existing Conditions: Bicycle LOS Adjacent to Schools	11
Existing Conditions: Crash Density Analysis - Pedestrian Incidents	12
Existing Conditions: Crash Density Analysis - Bicycle Incidents	13
Existing Conditions: Priority Intersection Locations	14
LIST OF FIGURES

A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Recommendations: Overview of Recommended Facility Improvements	15
Recommendations: Priority Sidewalk Additions	16
Recommendations: Priority Intersection Improvements (Sheets 1-8)	17
Recommendations: Twelve Corners Pedestrian Zone Concept	18
Recommendations: On-Street Bicycle Facility Recommendations	19
Recommendations: Bicycle Boulevard 1 Concept	20
Recommendations: Bicycle Boulevard 2 Concept	21
Recommendations: Bicycle Boulevard 3 Concept	22
Recommendations: Bicycle Boulevard 4 Concept	23
Recommendations: Bicycle Boulevard 5 Concept	24
Recommendations: Monroe Avenue Road Diet	25
Recommendations: Brighton Farash Parcel Trail Concept	26
Recommendations: Brighton Auburn Trail Concept	27
Recommendations: Brighton Auburn Trail Concept Graphic	28
Recommendations: Brighton Auburn Trail Concept Details	29
Recommendations: Buckland Park Hybrid Trail Concept	30
Recommendations: University of Rochester Hybrid Trail Concept	31
Recommendations: Elmwood Avenue Side Path Concept	32
Recommendations: Elmwood Avenue Side Path Concept Graphics	33
Recommendations: Rochester Multiversity Concept	34
Recommendations: Pedestrian and Bicycle-Oriented Parking Lots	35
LIST OF TABLES
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

<table>
<thead>
<tr>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronology of Community Involvement</td>
<td>2.1</td>
</tr>
<tr>
<td>Common Pedestrian Characteristics by Age Group</td>
<td>4.1</td>
</tr>
<tr>
<td>Population Trends</td>
<td>4.2</td>
</tr>
<tr>
<td>Active Transportation Demographics</td>
<td>4.3</td>
</tr>
<tr>
<td>BCSD Students Who Walk to School</td>
<td>4.4</td>
</tr>
<tr>
<td>Design Elements for Active Transportation</td>
<td>6.1</td>
</tr>
<tr>
<td>Bicycle Facility Recommendations</td>
<td>7.1</td>
</tr>
<tr>
<td>Development Standards for Active Transportation</td>
<td>7.2</td>
</tr>
<tr>
<td>Existing Active Transportation Education and Outreach Programs and Partnerships</td>
<td>7.3</td>
</tr>
<tr>
<td>Key Recommendations with Implementation Details</td>
<td>8.1</td>
</tr>
<tr>
<td>Schematic Cost Estimate Summary</td>
<td>8.2</td>
</tr>
<tr>
<td>Potential Funding Sources</td>
<td>8.3</td>
</tr>
<tr>
<td>Appendix</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>A</td>
<td>Public Input Summary</td>
</tr>
<tr>
<td>B</td>
<td>Active Transportation Survey Results</td>
</tr>
<tr>
<td>C</td>
<td>Pedestrian and Bicycle Level of Service Models</td>
</tr>
<tr>
<td>D</td>
<td>Pedestrian and Bicycle Level of Service Data Sheets</td>
</tr>
<tr>
<td>E</td>
<td>Shared-Use Trail Assessments</td>
</tr>
<tr>
<td>F</td>
<td>Peer City Review</td>
</tr>
<tr>
<td>G</td>
<td>Monroe Avenue Road Diet Calculations</td>
</tr>
<tr>
<td>H</td>
<td>Monroe Avenue Road Diet – Alternate Concept</td>
</tr>
<tr>
<td>I</td>
<td>Schematic Cost Estimates</td>
</tr>
<tr>
<td>J</td>
<td>Economic Impact of Trails</td>
</tr>
</tbody>
</table>
Chapter 1: Executive Summary
In 2008, the Town of Brighton determined that a Master Plan considering both bicycle and pedestrian traffic was essential for the success of the Town’s sustainability efforts. Funded by the Federal Highway Administration through the Genesee Transportation Council (GTC), the Town hired a consultant team to prepare a Pedestrian and Bicycle Master Plan. This plan, known as BikeWalkBrighton, will serve as a blueprint for a well-connected, safe, and functional active transportation network of sidewalks, and on- and off-road routes to enhance the safety and circulation of pedestrians, bicyclists, and motorists.

The Master Plan evaluated 43.6 miles of arterials and collectors throughout the Town of Brighton, as well as road and trail connections with the Town of Penfield, Town of Pittsford, Town of Henrietta and the City of Rochester. Connections to the University of Rochester Medical Center and River Campus, Rochester Institute of Technology, and the Brighton campuses of Monroe Community College were also assessed. The plan is intended to coordinate with major roadway improvement projects and private development projects. Finally, the plan evaluated connections between parks, open space, recreational trails, and intercampus trails linking local universities.

BikeWalkBrighton is the next step towards community sustainability. The Master Plan aims to create an inclusive system that recognizes the wide range of mobility levels of all pedestrians and bicyclists. Brighton has the opportunity to pursue a balance of on-road and off-road facilities that will meet the current needs of pedestrians and bicyclists and create a supportive environment for progressing less experienced cyclists to advanced riders.

PLANNING PROCESS. The planning process for BikeWalkBrighton included involvement from a dedicated Task Force as well as participation from the general public. The Task Force provided input, reviewed materials, and coordinated outreach efforts to the community about the project. The general public was invited to attend three public information meetings, provide feedback on project recommendations, participate in a Town-wide survey, and follow project progress through a project website, as well as via Facebook and Twitter.

The planning process included a review of existing bicycle, pedestrian and multi-use trail plans, studies and proposals, as well as other relevant Town planning documents. The plan has been designed to provide direction regarding the active transportation issues associated with the Town of Brighton’s planning initiatives, such as the Monroe Avenue Vision Plan and the Comprehensive Plan update.

The goal of an improved active transportation system is compatible with other community planning efforts related to transportation and sustainability. While pedestrian and bicycle improvements are important to meet the needs of Brighton today, they are likely to be even more important in meeting the needs of tomorrow. With the development of this plan, the Town of Brighton is taking a progressive stance in addressing important issues, such as rising fuel prices, environmental degradation, and health problems related to inactivity. BikeWalkBrighton will help the Town to harvest the long-term economic, environmental, health and social benefits of active transportation.
EXEUTIVE SUMMARY
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

EXISTING CONDITIONS ASSESSMENT. The Plan contains a thorough assessment of the existing conditions in Brighton. The topics reviewed include the characteristics of residents and the Town, existing pedestrian and bicycling conditions, accident data, existing trail conditions, priority intersections, and existing programs and policies. In addition, an active transportation survey was used to gather information reflecting Brighton residents' current levels of walking and bicycling activity, their attitudes toward walking and bicycling, and their insight into barriers that exist.

The physical characteristics of a community can impact the development of bicycle and pedestrian facilities. The physical characteristics of Brighton make it promising for the growth of an active transportation network. The Town is relatively compact, and the moderate topography is manageable by pedestrians and bicyclists of various ages and ability levels. Climate presents a challenge for some residents, but many other communities have extensive active transportation networks in spite of cold weather.

A total of 43.6 miles of roadway were assessed in the study. The existing pedestrian conditions along these roadways were assessed through an inventory of sidewalks and pedestrian level of service. Of the 87.2 miles of possible sidewalk along the roadways in the study area, 36.5 miles of sidewalk were found. The Pedestrian Level of Service (LOS) Model indicates how safe and/or comfortable pedestrians feel while walking alongside a particular roadway. The Town-wide average for pedestrian LOS was found to be 3.7, an average score of D. None of the roadway segments earned an A, and only a few earned a B or an F. Most of the segments earned a C, D, or an E.

A similar process was used for evaluating bicycling conditions. The Bicycle Level of Service Model indicates how safe and/or comfortable bicyclists feel while riding on a particular roadway. The Town-wide average for bicycle LOS was found to be 3.3, an average score of C. No roadway earned an F, but a few earned an A. Most roadways were found to be a B, C, D or E.

A safety evaluation was also conducted for the Town of Brighton using 10 years of historical data from the GTC. Pedestrian and bicycle crash locations were each mapped in order to identify areas that are a safety concern. This safety assessment was a key component in selecting the priority intersections, as well as making recommendations for priority sidewalk additions.

Bicycle and pedestrian conditions on shared-use trails in the Town of Brighton were also assessed during the study. In addition to roadways, sidewalks and shared-use trails, the Existing Conditions Assessment for BikeWalkBrighton included an analysis of priority intersections. Intersections were identified based on their proximity to destinations, level of use and known safety issues (as identified in the safety evaluation).

Intersection safety assessments involved field investigations that considered the physical and operational characteristics of each location, pertinent to pedestrian and bicycle safety. Elements that were investigated include: sidewalks, crosswalks, crossing widths, intersection geometry and corner radii, traffic controls, lighting, sight lines and other physical conditions; signal operations, phasing and timing related to pedestrian safety, turning volumes, traffic operations, movements and speeds.

PEER CITY REVIEW. The Peer City Review compiled active transportation ideas and best practices from some progressive communities with characteristics similar to Brighton. The foundation for this report is a peer city review conducted for the City of Rochester's Bicycle Master Plan in 2010. Cities identified in the Rochester project included Boulder, Colorado; Montreal, Quebec; Minneapolis, Minnesota; and Madison, Wisconsin. Due to the inherent differences between Rochester and Brighton, and because BikeWalkBrighton includes pedestrians, additional cities were added and each of the original peer cities was reviewed for pedestrian facilities and programs.

The Peer City Review includes inner-ring suburban communities similar to the Town of Brighton. The new peer suburban communities are Westminster, Colorado; Edina, Minnesota; Fitchburg, Wisconsin; and Middleton,
EXECUTIVE SUMMARY
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Wisconsin. Much of the information about each city’s program is available in the city’s transportation plans and and/or bicycle or pedestrian master plans. Additional details, typically on implementation, were added based on interviews with the bicycle and pedestrian coordinators from the respective cities.

ALTERNATIVES. The Alternatives Toolbox compiles the active transportation facilities considered for the Town of Brighton and their potential impacts. Multiple design, program and policy solutions can be used to address bicycle and pedestrian needs. Thus, for each active transportation alternative, reviewing the design details, impacts, and viability for the Town of Brighton was critical to selecting an appropriate solution.

Each alternative was evaluated based on three categories (impacts to the budget, impacts to different users, and impacts to the environment), as well as their appropriateness for addressing the issues specific to the Town of Brighton. Based on input from the BikeWalkBrighton Task Force and the community, the consultants selected which alternatives were the most appropriate.

RECOMMENDATIONS. The plan advocates for a comprehensive approach to enhancing active transportation in the Town of Brighton. Core concepts guiding the recommendations include:

1. Improving safety through implementation of infrastructure improvements, programs and policies.
2. Providing a balanced approach that addresses the needs of pedestrian and bicyclists of all ability levels.
3. Emphasizing links and connections between existing active transportation assets to support the growth of a safe, attractive and identifiable BikeWalkBrighton network.
4. Identifying partnerships and collaborations that foster the growth of active transportation in Brighton and surrounding communities.
5. Making the best use of existing infrastructure and opportunities to provide a cost-effective and sustainable active transportation system.

The infrastructure recommendations include intersection improvements, sidewalk additions, bicycle boulevards, new shared-use trails, and “hybrid trails” which blend different facility types into a continuous route. Concept projects take advantage of existing infrastructure and opportunities, address the need for new east-west routes, and provide connectivity to community resources. Taken together, implementation of the recommended projects will provide an expanded grid for active transportation in Brighton, and improved connectivity to the growing regional system.

IMPLEMENTATION. The final section in the plan includes a discussion of the proposed phasing and implementation of the various recommendations, cost estimates associated with selected projects, potential funding sources, and next steps. Each project varies in priority based on the number of people served by the project and the feasibility of construction and funding. Each project was ranked as a Priority project, Recommended project, or Possible project. Each ranking has related sequencing recommendations.

The projects recommended in BikeWalkBrighton encompass a number of facets of active transportation, and vary significantly in cost, effort, and resources required for successful implementation. The Town of Brighton has a finite amount of resources that can be applied to each project, and will not be able to address every recommendation immediately. However, the Town of Brighton has committed to assuming the financial responsibility for active transportation facility improvements as resources allow.

It is important to note that the recommended improvements have been studied to assess feasibility, but have been neither studied nor developed to the extent necessary to immediately commence construction. Additional study and operational analysis is required for each of the recommendations prior to implementation. Consultation and concurrence from impacted facility owners is required prior to implementation. Where appropriate, either access agreements from landowners or property acquisition are necessary prior to implementation.
Chapter 2: Introduction
INTRODUCTION
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

This report summarizes the analysis, planning, and design efforts involved in BikeWalkBrighton, the Town of Brighton’s Pedestrian and Bicycle Master Plan.

A. Background and Purpose of the Plan
The goal of planning is to improve the welfare of people and their communities by creating more convenient, equitable, healthful, efficient, and attractive places for present and future generations. As such, planning is an orderly, open approach to determining a community’s needs and goals, and developing strategies to address those needs and meet those goals. Land use planning enables civic leaders, businesses, and citizens to play a meaningful role in creating communities that enrich people’s lives.

A Master Plan is a product of land use planning, and serves as a blueprint for the future. It is a comprehensive long range document, intended to guide local decisions on public and private uses of land, as well as the provision of public facilities. A Pedestrian and Bicycle Master Plan is intended to guide growth and development as it relates to pedestrian and bicycle issues. A Master Plan is a policy based document, but it does not regulate land use. Thus, a Master Plan is not a zoning document - the recommendations are only to provide guidance. A Master Plan contains conceptual projects and ideas. The recommended improvements have been studied to assess feasibility, but have been neither studied nor developed to the extent necessary to immediately commence construction. BikeWalkBrighton is an expression of the Town of Brighton’s intentions for the future regarding active transportation, and provides guidance to accomplish that vision.

In May 2007, then-Supervisor Sandra Frankel established the Green Brighton Task Force (GBTF) to review issues related to climate change, and make recommendations about ways that the Town could become more energy efficient and environmentally aware, and reduce its carbon footprint. The GBTF recommended the creation of a Bicycle Task Force to develop a safe and functional bike plan for the Town of Brighton.

The Town of Brighton realized that a Master Plan considering both bicycle and pedestrian traffic was essential for the success of the Bicycle Task Force. Therefore, the Town applied for and received Unified Planning Work Program funding from the Genesee Transportation Council (GTC) to prepare a Pedestrian and Bicycle Master Plan, with the intention to develop a plan for a well-connected and functional active transportation network. Brighton will connect to active transportation plans previously developed for the City of Rochester and the Town of Penfield. This study developed recommendations for roadways (such as Highland Avenue) that overlap with other communities. These improvements will require intermunicipal coordination. Improvements beyond the Town boundary will not be funded by the Town of Brighton. See Figure 1 for an illustration of intermunicipal connections.
EXISTING CONDITIONS ASSESSMENT

Figure 1
Inter-Municipal Active Transportation Network

Legend
- Bicycle Facility Connectivity Opportunity
 Penfield Bicycle Facilities Master Plan 2008
 Rochester Bicycle Master Plan 2010

Opportunities
1. Browncroft Boulevard (also 1A)
2. Blossom Road (also 2A)
3. Penfield Road
4. Route 441
5. East Avenue
6. Highland Avenue
7. South Winton Road
8. Monroe Avenue
9. South Clinton Avenue
10. Elmwood Avenue
11. East Henrietta Road
12. West Henrietta Road

This study developed recommendations for roadways (such as Highland Avenue) that overlap with other communities. These improvements will require intermunicipal coordination. Improvements beyond the Town boundary will not be funded by the Town of Brighton.

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
The primary objective is to develop a well-connected, safe, and functional active transportation network of sidewalks and on- and off-road trails to enhance the safety and circulation of pedestrians, bicyclists, and motorists.
INTRODUCTION
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

B. Community Outreach and Public Input
Planning of any kind cannot be done in a vacuum, and must be informed by local residents. GTC regularly identifies community participation as an objective in the Long Range Transportation Plan for the Genesee-Finger Lakes Region, which guides their planning efforts. The Plan states, “The transportation planning process should be conducted in an open and visible a manner as possible, encouraging community participation and interaction between and among citizens, professional staff, and elected officials.” Public participation is not just a requirement, but a critical element of a successful plan.

Table 2.1. Chronology of Community Involvement

<table>
<thead>
<tr>
<th>Date</th>
<th>What</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 15, 2011</td>
<td>Task Force Meeting</td>
<td>Project Kick-off</td>
</tr>
<tr>
<td>December 19, 2011</td>
<td>Task Force Meeting</td>
<td>Review project progress</td>
</tr>
<tr>
<td>February 9, 2012</td>
<td>Task Force Meeting</td>
<td>Review project progress</td>
</tr>
<tr>
<td>March 12, 2012</td>
<td>Task Force Meeting</td>
<td>Review Inventory and Analysis with consultant</td>
</tr>
<tr>
<td>March 29, 2012</td>
<td>Public Information Meeting</td>
<td>Introduce Project, Present Inventory and Analysis, Solicit Input</td>
</tr>
<tr>
<td>April 24, 2012</td>
<td>Task Force Meeting</td>
<td>Review project progress</td>
</tr>
<tr>
<td>May 14, 2012</td>
<td>Task Force Meeting</td>
<td>Review project progress</td>
</tr>
<tr>
<td>June 18, 2012</td>
<td>Task Force Meeting</td>
<td>Review Draft Recommendations with consultant</td>
</tr>
<tr>
<td>June 28, 2012</td>
<td>Public Information Meeting</td>
<td>Present Draft Recommendations, Solicit Input</td>
</tr>
<tr>
<td>August 20, 2012</td>
<td>Task Force Meeting</td>
<td>Review project progress</td>
</tr>
<tr>
<td>September 24, 2012</td>
<td>Task Force Meeting</td>
<td>Review Final Recommendations</td>
</tr>
<tr>
<td>October 2, 2012</td>
<td>Public Information Meeting</td>
<td>Present Final Recommendations</td>
</tr>
</tbody>
</table>

The planning process for BikeWalkBrighton included involvement from a dedicated Task Force as well as participation from the general public. Representatives from the Town of Brighton, and from pedestrian and bicycling organizations, served on the BikeWalkBrighton Task Force. The Task Force provided input, reviewed materials, and coordinated outreach efforts to the community about the project. The general public was invited to attend three public information meetings, provide feedback on project recommendations, participate in a Town-wide survey, and follow project progress through a project website, as well as Facebook and Twitter. As of November 2012, nearly 300 surveys have been completed, the website has had more than 800 unique users, the Twitter feed has 22 subscribers, and the Facebook page has 94 “likes” or followers. Appendix A summarizes public outreach.
C. Relationship to Other Plans and Studies

In developing new plans, it is important to refer to plans and studies that have already been completed to evaluate how the new plan relates to existing plans. A review of existing bicycle, pedestrian and multi-use trail plans, studies and proposals, as well as other relevant Town planning documents, provides context for the development of this Pedestrian and Bicycle Master Plan. In addition, representatives from local colleges and universities (U of R, RIT and MCC) were consulted; however, their extensive plans and studies are not listed below.

1. Comprehensive List of Plans, Studies and Technical Memorandums

BikeWalkBrighton builds on the following previously completed local planning initiatives:

- Bicycle and Pedestrian Action Plan for the Rochester Metropolitan Area, 1996
- Corbett’s Glen Master Plan, 2005
- Genesee-Finger Lakes Historic Transportation Gateway Inventory and Assessment, 2009
- Highland Park/Canalway Trail Planning and Concept Design, 2004
- I-590 Bicycle/Pedestrian Bypass Feasibility Study, 2009
- Long Range Transportation Plan for the Genesee Finger-Lakes Region 2035
- Monroe Avenue Streetscape Study, 1996
- Monroe Avenue Vision Plan, 2011
- Mount Hope Avenue: A Vision for Collegetown, 2008
- Planning for Sustainability in the Aliens Creek – Corbett’s Glen Area, 2010
- Rochester Bicycle Master Plan, 2011
- Safe Routes to School Guidebook for the Genesee-Finger Lakes Region, 2009
- Technical Memorandum: On-Street Bicycle Facilities Opportunities Assessment, 2007
- Technical Memorandum: Overview of Currently Accepted Bicycle Facility Standards, Guidelines, Practices, 2005
- Town of Brighton Comprehensive Plan, 2000
- Town of Brighton Forestry Plan, 2004
- Town of Brighton Open Space and Recreation Plan, 2001
- Town of Brighton Open Space Index Update, 2006-2007
- Town of Penfield Bicycle Facilities Master Plan, 2009
- University of Rochester Campus Master Plan, 2008

2. Selected Summaries of Plans, Studies and Technical Memorandums

While all of the listed studies and reports provide important information, the following summaries provide more detail about the planning documents that relate most to the Master Plan.

Bicycle and Pedestrian Action Plan for the Rochester Metropolitan Area, 1996. This report was prepared in 1996 by the Genesee Transportation Council in response to the Federal policy to promote increased use of bicycling and walking as transportation. The Intermodal Surface Transportation and Equity Act (ISTEA) of 1991 required inclusion of these elements in Metropolitan Transportation Plans and Programs. The plan focuses on specific, achievable actions that would improve conditions for bicycling and walking in the Rochester Metropolitan Area. This plan makes recommendations for bicycle transportation, pedestrian walkways and off-street multi-use trails. The action items for each of these areas are broken down into five categories: engineering, education, enforcement,
encouragement and economic development. Despite having many important recommendations, in general this plan does not address specific locations for improvements. The plan does, however, propose on-street bicycle routes, including East Avenue, and Mount Hope Avenue, which connect to roadways in the Town of Brighton.

Final Report of the Green Brighton Task Force: Recommendations for Sustainable Future, 2008. The Green Brighton Task Force worked for a year to develop a set of recommendations for Town action on energy and sustainability issues. The report states that the overriding philosophy that should guide future growth and redevelopment of the Town of Brighton is sustainability. Decision-making on transportation, development, and redevelopment should be made with an eye toward the future.

The final report details the following recommendations:
1. Ensure that sustainability remains a Town priority;
2. Encourage green buildings (public and private);
3. Support walkability and alternative transportation;
4. Reduce energy used by Town vehicles;
5. Create more efficient exterior lighting in the public realm;
6. Create a culture of conservation in Town government;
7. Create a culture of conservation in the community;
8. Encourage green business development and green business practices; and
9. Reduce storm water runoff and improve storm water quality.

I-590 Bicycle/Pedestrian Bypass Feasibility Study, 2009. The I-590 Bicycle/Pedestrian Bypass Feasibility Study was part of the 2007-2008 Priority Trails Advancement (PTA) Program administered by the Genesee Transportation Council. This feasibility study recommended the construction of a multi-use trail to connect the Brighton Town Hall Complex on Elmwood Avenue with the Erie Canalway Trail in Meridian Centre Park, as well as link to Buckland Park on Westfall Road. The Erie Canalway Trail, the trail’s southern terminus, is an important east-west recreational corridor within New York State, connecting Albany and Buffalo. The portion of the Canalway Trail that goes through Brighton links the Town with Pittsford, Fairport, Greece and the City of Rochester. Approximately 1.75 miles in length, the study area traverses residential neighborhoods, parks, and undeveloped land. The greatest physical challenge to overcome within the study area is I-590, which bisects the trail corridor adjacent to Meridian Centre Park.

Long Range Transportation Plan for the Genesee-Finger Lakes Region 2035 (LRTP 2035). This plan recognizes that the bicycle and pedestrian networks offer the greatest opportunity to improve public health, reduce greenhouse gas emissions, and provide mobility and accessibility to the majority of residents. It includes recommendations to expand the amount of and increase the connectivity of multi-use trails in the region, to increase the availability of sidewalks along federal-aid highways to expand connectivity and access for pedestrians, to promote safe routes to school programs, and to increase the amount of bicycle parking at key locations as well as others to enhance opportunities for active transportation. It recognizes as an issue and opportunity that the transportation system’s role in public health extends beyond safety. As such, LRTP 2035 notes that enabling bicycling and walking promotes active transportation that has the potential to reverse the epidemic of obesity that is one of, if not the most, pressing public health issues in the nation.
INTRODUCTION
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Monroe Avenue Vision Plan, 2011. In collaboration with Brighton residents and stakeholders, the Rochester Regional Community Design Center (RRCDC) prepared a community-based Vision Plan for the Brighton/Monroe Avenue Corridor from Highland Avenue to Clover Street. The Vision Plan contains design plans reflecting the goals and ideas of community stakeholders developed during a 2010 design charrette regarding the development of the Monroe Avenue Corridor. The Brighton/Monroe Avenue Corridor Vision Plan contains overlay base plans, each of which includes design and development recommendations for segments of Monroe Avenue that correspond to focus areas that were explored during the charrette. Additionally, the Vision Plan details the potential redesign of the Twelve Corners intersection and green space. The preliminary recommendations in the plan are based on concepts that were important to community members. These concepts include:

- Increasing vehicular and pedestrian safety through alternate traffic patterns and traffic calming, as well as enhanced signage and crossings;
- Creating an environment that is both bicycle and pedestrian friendly;
- Developing a strategy for parking management;
- Respecting, reclaiming and preserving existing historical buildings and green space; and
- Promoting economic vibrancy and opportunity.

Regional Trails Initiative Final Report & Action Plan: Phase I – Rochester TMA, 2002. While primarily a plan for the regional trails vision, this document states that its purpose is to develop a comprehensive and achievable action plan for community leaders to create and maintain a safe, accessible, and highly functional regional trail system that is fully integrated with the existing transportation system and constitutes a nationally recognized distinguishing feature of this region.

The plan acknowledges that in order to truly meet the transportation and recreation needs of the region, it will be necessary to fully integrate the region’s trails with its existing road network. It contains a list of on-street trail connection recommendations, including 16 roadways in Brighton, and recommends that Roadway Corridor Feasibility Plans be undertaken to determine what type of improvements are needed and feasible on specific roadway corridors.

The following trail enhancement recommendations were identified in the Town of Brighton:

- Near Term: Auburn Line Trail – Brighton Section Rail to Trail Conversion - Clover St to Highland Ave
- Near Term: Canalway Trail Bridge Connection to MCC
- Near Term: Canalway Trail Upgrade – Brighton to Greece
- Mid-Term: Brighton Trail Development – New Trail Between Elmwood Ave and Westfall Rd
- Mid-Term: Irondequoit Creek Stream Corridor Trail – Panorama Plaza to Empire Boulevard
- Mid-Term: Route 590 Bicycle/Pedestrian Bypass

Rochester Bicycle Master Plan, 2011. The objective of this Plan was to identify long-range opportunities for improved bicycling infrastructure and services within the City of Rochester. While the Plan covers many bicycling-related topics, the two main areas of focus are a detailed evaluation of the City’s existing on-street bicycle network and the creation of City-wide recommendations to both enhance and promote bicycling in Rochester. The Plan includes a summary of existing planning documents, a peer city review, an evaluation of the City’s major roadways, and identification/prioritization of potential bicycle facility improvements on those roads. Options for improving conditions were identified, focusing on opportunities for roadway restriping. Broader City-wide recommendations were also made regarding other bicycle facilities and treatments (such as bike boulevards) and changes to zoning language. The findings of this Plan suggest that the City of Rochester is ideally suited to see a significant increase in the amount of bicycling that occurs. To help Rochester achieve its full bicycling potential, this Plan made recommendations from the perspectives of improving on-street bicycling facilities/accommodation and taking advantage of existing initiatives/partnerships to encourage residents to get out and ride.
INTRODUCTION
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Safe Routes to School Guidebook for the Genesee-Finger Lakes Region, 2009. This guidebook is a plan to establish safe walking and bicycling programs for schools in the Genesee-Finger Lakes Region. In addition to describing the basic elements of starting a program, it discusses the opportunities and barriers to doing so, and describes how to implement a program.

Technical Memorandum: Bicycle & Pedestrian Supportive Code Language, 2007. This document examined local and regional zoning and development codes to identify exemplary codes and policies that enhance accessibility and safety for bicyclists and pedestrians. This memorandum includes many examples that are appropriate in the Town of Brighton, which are referenced in the Recommendations section of this document.

Technical Memorandum: On-Street Bicycle Facilities Opportunities Assessment, 2007. This document updates the work done on the Regional Trails Initiative, focusing on opportunities to incorporate bicycle accommodation per the accepted range of on-street bicycle facility types emphasizing low-cost applications and strategic improvements. Roads were categorized based on rural/urban classification, posted speed, pavement width, shoulder width, number of lanes and average daily traffic.

Technical Memorandum: Overview of Current Accepted Bicycle Facility Standards, Guidelines, and Practices, 2005. This Technical Memorandum provides an overview of the current accepted national, state, and local bicycle facility standards, guidelines, and practices. It also provides information on liability as it relates to bicycle facilities and the accommodation of bicycling in our transportation system. This information serves as a basis for recommending bicycle facility treatments for the Rochester Transportation Management Area (TMA) roadway system. The Rochester TMA includes Monroe County and the adjacent developed areas of Livingston, Ontario and Wayne Counties.

To support municipalities and transportation agencies’ efforts to improve bicycling conditions in this region, GTC staff surveyed and assessed existing roadway conditions for opportunities to provide on-street bicycle accommodations within the Rochester TMA. This survey utilized existing data and Geographic Information Systems (GIS) resources compiled by GTC staff. GTC staff employed current accepted bicycle facility standards, guidance, and practices to recommend potential bicycle accommodations for collector and arterial roads in the TMA.

Town of Brighton Comprehensive Plan 2000. Comprehensive Plan 2000 provided a community vision and plan for the future of Brighton. Comprehensive Plan 2000 was intended to be the primary instrument used to direct the use of land in the community, particularly the Town’s remaining open spaces. The vision for the future of the Town as...
stated in the plan is: “Centrally located in the Rochester metropolitan area, the Town of Brighton values its diversity and sense of community. In planning for the future, our community wishes to protect the beauty and livability of its residential areas, increase park and recreation space, enhance the Twelve Corners/Town Hall area as the center of the Town, extend the green and landscaped aspect of its neighborhoods to its commercial areas, and expand its tax base in a financially responsible manner that is compatible with these goals.”

In support of this vision, Comprehensive Plan 2000 incorporated two major elements, the Open Space & Recreation Plan and the Land Use Plan, and included other elements important to Brighton’s future: Visual Character, Regional Coordination, the Natural Environment, Town Services, Housing and Transportation. For each of these plan elements, goals and recommendations were developed by the Comprehensive Plan Steering Committee. The plan also included an implementation section to ensure that recommendations were acted upon, as well as lay out a procedure for updating the plan in the future.

Town of Brighton Open Space Index, 2006/2007. The purpose of this inventory was to provide information on open spaces to Town staff, Board members and others to assist in the development review process and facilitate sound land use planning decisions. The inventory included information on site location, ownership, physical features such as streams, soils and slopes as well as proximity to sanitary sewer and water services, and natural features such as plant communities. Site planning data such as zoning and land use information and potential linkages with other open space or cultural features were also included. This document was meant to be used as a reference to identify sensitive environmental features, and potential environmental hazards for open spaces which may be affected by development proposals. A total of 25 separate open space areas were mapped. The document was prepared to provide technical information on open space sites in the Town of Brighton, rather than serve as a policy document.

Town of Penfield Bicycle Facilities Master Plan, 2009. This report summarizes the objectives, procedures and products derived from the analysis and planning studies for the Bicycle Facilities Master Plan for the Town of Penfield. Based on input from the Penfield bicycling community, a list of Community Destinations was mapped. The best roadways accessing and connecting the Community Destinations were identified and mapped as Priority Bicycle Routes. The Priority Routes include roughly 61 miles of roadway, and fall under Town, County and State jurisdiction. An inventory and analysis process was then applied to the Priority Bicycle Routes. To help focus and prioritize implementation of improvements, input from the cycling community was solicited to identify areas along the Priority Routes that have problems in need of immediate attention or repair.

The Penfield Bicycle Facilities Master Plan emphasizes the requirements of the basic cyclist, while recognizing the needs of advanced cyclists and children. Recommendations for improvements were made in four categories: On-road Improvements, Off-road Improvements, Bike Facilities at Destinations, and Policies & Programs. A phasing plan and cost estimates are included to facilitate implementation of the Recommendations. An Education Plan provides tools and strategies to increase public awareness, enhance safety, and encourage bicycling among a diversity of user groups. The Education Plan recognizes that transportation networks are shared resources utilized by motor vehicles, bicycles, and pedestrians alike.
D. Parallel Projects
As with most planning efforts, other projects are planned or proposed concurrent to the planning efforts at hand. The purpose of this section is to briefly describe projects that are being proposed within or adjacent to the Town of Brighton that could potentially impact bicycle or pedestrian facilities, effect roadways, or contribute to the objectives of BikeWalkBrighton. The projects discussed in this section are not being proposed, developed, or funded by the Town of Brighton (except where indicated). They are independent initiatives sponsored by a variety of public and private organizations.

CityGate
Proposed by Anthony J. Costello and Son Development, CityGate will be an urban live-work community on the Erie Canal. The project, which is under consideration by the Town, will span 63 acres in Rochester and Brighton, with one-third of the property in the Town. The project calls for redeveloping the former Monroe County Iola campus into 1.2 million square feet of offices, retail, a hotel, and 1,035 housing units. Also proposed are two parking garages and 2,700 off-street parking spaces. The proposal states that 1,500 construction jobs and 700 permanent jobs will be created. This project is to be completed in phases, with the northwest part of the property at Westfall and East Henrietta Roads to be developed first. This phase calls for a mixed-use neighborhood with offices and residential.

Clinton Crossing Corporate and Lifestyle Center
Project plans include 988,000 square feet of mixed use development including 820,000 square feet of office and 168,000 square feet of commercial and retail. The proposal includes 3,420 parking spaces, additional medical offices at Clinton Crossings, a corporate center, and a lifestyle center on the east end of the parcel with retail space. A hotel and convention center are planned at a different site as a separate project, unrelated to this project. Plans for considerable green space are also included.

Diverging Diamond Interchange
At the interchange of I-590 and South Winton Road, morning rush-hour traffic is heavy exiting the expressway, causing traffic to back up from the off ramp. South Winton Road northbound also experiences high volumes, causing backups into adjacent intersections and onto the bridge over the Erie Canal—resulting in a fair number of collisions. To address this problem, the New York State Department of Transportation is building a Diverging Diamond Interchange, a new and different kind of traffic pattern that’s been shown to improve safety for drivers, bicyclists, and pedestrians. The Interchange includes improved sidewalks, curbed refuge islands, crosswalks, multi-use sidewalks, and designated on-road bicycle shoulder space. Diverging Diamonds help create a smoother traffic flow with fewer backups and delays. The Diverging Diamond in Brighton is the first in New York State. Construction is scheduled to be complete in the Fall of 2012.

Faith Village
Faith Temple, a non-denominational religious group, has proposed Faith Village on a 70-acre site near South Winton and Westfall Roads. An application has been filed for consideration by the Town, which includes a community-oriented complex featuring a new church sanctuary, school, pre-school, youth center, and senior living facility.

Highland Crossings Trail (Highland Park/Canalway Connector Trail)
The Highland Crossings Trail will connect Highland Park in the City of Rochester with the Erie Canalway Trail and the Genesee Riverway Trail. When constructed, the trail will provide a safe pedestrian and bicycle route to Highland Park from both of these well-traveled regional trails. The connectivity improvements will significantly enhance the local and regional trail system by providing access to the park, as well as other new destinations. The trail will include on-road and off-road sections in order to complete the route. No federal transportation funding is committed at this time, and as such, construction timing is unknown.
INTRODUCTION
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Monroe Avenue Green Street
The Monroe Avenue Green Street project will reconstruct road right-of-way on Monroe Avenue in the Town of Brighton with green infrastructure stormwater management practices and naturalize an adjacent channelized stream segment. The project will focus on Monroe Avenue from approximately Buckland Creek to Westfall Road. Proposed streetscape and stormwater improvements include street trees, bioretention areas, porous pavement sidewalks, rain gardens, and riparian buffers. The project will provide a wide range of benefits, including a reduction in stormwater pollution, improved water quality, and minimized flooding. The project will also restore sections of Buckland Creek as a community resource, contribute to the revitalization of 12 Corners, and demonstrate the effectiveness and feasibility of green infrastructure practices to the community. Funding has been awarded to the Town by New York State. The project will be constructed by the Town of Brighton.

Mount Hope Avenue Reconstruction, Phase 1
These improvements include a full reconstruction of Mount Hope Avenue, between Elmwood Avenue and Rossiter Road. Mount Hope Avenue is a five-lane Principal Arterial that contains some of the most accident-prone intersections in the region. Currently under construction, plans call for a landscaped center median with turn lanes, on-street parking, wide sidewalks, enhanced lighting, access management, and a new signalized intersection coordinated with the planned University of Rochester Collegetown mixed-use development.

The Reserve
Also proposed by Anthony J. Costello and Son Development, The Reserve on the Erie Canal will be a 65-acre, 327-unit residential community located along the Erie Canal in the Town of Brighton. The proposed hybrid urban-suburban project will include six distinct “neighborhoods” with a diversity of home style options, anchored by a 12,000 SF clubhouse and 1.3-mile trail system. The walking path will connect to the Town of Brighton’s Meridian Centre Park and the Erie Canalway Trail. The Erie Canalway Trail will receive significant improvements between Meridian Centre Park and East Henrietta Road, including 110 light poles, new docks and launching areas, public parking, and seating areas. South Clinton Avenue will be restriped to reduce travel lanes in both directions, and include a wide shoulder to accommodate bicycle traffic. Construction began in the Fall of 2012, and will continue for several years.

St. John’s Community: Brickstone Development
St. John’s Senior Communities is developing a new St. John’s Community, Brickstone Development, located to the west of St. John’s Meadows along Elmwood Avenue. Currently under construction, this development will be comprised of the following senior living residential development features: 53 single family bungalow cottages; 9 town homes; 40 independent living apartments; and a village center. The village center will house a 6,000 SF area for tenant retail/commercial uses and 4,000 SF for common area and support service functions, such as facility management and resident community space. The Highland Crossing Trail will be constructed along the southern and western property lines, and easements have been provided as a part of the development effort.

Town of Brighton Comprehensive Plan Update
The Town of Brighton will begin updating the 2000 Comprehensive Plan in 2013. Recommendations from the BikeWalkBrighton final report will be incorporated into the Comprehensive Plan update.

Winfield Park
Winfield Park is approximately 132.2 acres of mixed use development including residential, senior housing, office space and a community clubhouse on seven parcels of property located on Brighton-Henrietta Town Line Road, east of the Clinton Avenue and BHTLR intersection, in the Town of Brighton. An application has been filed for consideration by the Town, which includes 64 single-family patio homes; 65 townhomes; 360 apartment units contained within nine, four-story buildings; four, 10-bedroom ‘greenhouse’ structures to be owned and operated by St. John’s Nursing Home, 332,000 total square feet of office space, a community center, and approximately 68 acres of open space. The project, as proposed, will include some improvements to the southern side of the canal.

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
Chapter 3: Active Transportation Benefits
ACTIVE TRANSPORTATION BENEFITS

The goal of an improved active transportation system is compatible with other community planning efforts (previously outlined) related to transportation and sustainability. While pedestrian and bicycle improvements are important to meet the needs of Brighton today, they are likely to be even more important in meeting the needs of tomorrow. With the development of this plan, the Town of Brighton is taking a progressive stance in addressing important issues, such as rising fuel prices, environmental degradation, and health problems related to inactivity. BikeWalkBrighton will tie into other ongoing Town-wide sustainability efforts, and will help the Town to harvest the long-term economic, environmental, health and social benefits of active transportation.

Transportation accounts for more than 30 percent of the carbon dioxide emissions in the United States (West, 2007). In addition, transportation is a significant household expense for many people. However, there are other transportation options besides using a motorized vehicle, which include active transportation possibilities, such as walking and bicycling. Walking and bicycling as a means of transportation offer environmental, health, economic and social benefits.

Active transportation has benefits in each one of these categories, but the synergy between these varied and disparate benefits results in enhanced community sustainability:

- A local economy that is robust and balanced, with better access to jobs, education and health care.
- Increased health for persons engaging in active transportation, and increased safety for all.
- Ecosystems that thrive as a result of reduced air pollution and reduced greenhouse gas emissions.
- Infrastructure that encourages culturally and socially diverse groups to prosper and connect to the larger community.

The following pages discuss the various benefits associated with active transportation.
A. ENVIRONMENTAL BENEFITS

Switching to active transportation reduces emissions of greenhouse gases and other pollutants that contribute to global warming, smog, and acid rain. Greenhouse gases are atmospheric gases – primarily carbon dioxide, methane and nitrous oxide – which trap the sun’s heat, making the Earth a greenhouse. Emissions of greenhouse gases enhance the Earth’s greenhouse effect, contributing to climate change. Air pollution includes ground level ozone and fine airborne particles, as well as carbon monoxide, nitrogen oxides and sulfur oxides. This mix of substances makes smog (SES, 2007). Air pollution also causes lung cancer and respiratory problems. A study of U.S. cities found that mortality rates were 17-26% higher in cities with the dirtiest air compared to those with the cleanest air.

Half of the average person’s greenhouse gas emissions result from transportation.

- Motor vehicle emissions represent 31% of total carbon dioxide, 81% of carbon monoxide, and 49% of nitrogen oxides released in the U.S. (LAB, 2012).
- Short car trips are much more polluting than longer trips on a per-mile basis.
- 60 percent of the pollution resulting from auto emissions is released during the first few minutes of operation of a vehicle (LAB, 2012).

The majority of Americans use their cars to make short trips of a mile or less, causing major environmental damage.

- Of all the trips made in the United States, 50% are less than three miles and 28% are one mile or less.
- A personal motor vehicle is driven in 72% of trips involving less than one mile.
- 50% of the working population commutes five miles or less to work.

Choosing active transportation is an easy way to reduce our environmental impact – bicycling and walking create zero greenhouse gas emissions. A short, four-mile round trip by bicycle keeps about 15 pounds of pollutants out of the air we breathe (Worldwatch Institute). Infrastructure designed to accommodate vehicles is harmful to the environment as well. There are 800 million automobile parking spaces in the U.S., totaling 160 billion square feet of concrete and asphalt. The environmental impact of all of these parking spaces is equivalent to 10 percent more carbon dioxide emissions per automobile (Bikes Belong, 2012). Active transportation can reduce air pollution, minimize traffic congestion, and help to lessen our national dependence on petroleum.
The most valuable natural resource of any community is the health of the residents. In 2012, the Centers for Disease Control and Prevention (CDC) reported the following statistics from 2010:

- Obesity has risen dramatically in the last 20 years
- 35.7% of U.S. adults age 20 and older – over 78 million people – are obese
- The percentage of young people who are overweight has more than tripled since 1980
- 17% of young people age 2-19 years – over 12.5 million people – are obese
- Overall, adults aged 60 and over were more likely to be obese than younger adults

In Upstate New York, childhood obesity trends exceed or match national trends. In 2004, 21% of Upstate New York 3rd graders were obese, which exceeds the national rate of 17% (Upstate NY, 2004). Childhood overweight and obesity is a precursor for adult obesity. The Strategic Plan for The Prevention of Childhood Overweight and Obesity in Monroe County, NY 2007-2017, cites “the physical environment and the lack of affordable and safe recreational venues for many children,” as a factor in childhood overweight and obesity.

Research studies have found that overweight and obese children have lowered academic achievement in standardized test scores (CA Dept of Ed, 2005). Also, findings in other studies show that children who are physically active perform better academically and miss fewer days of school (Owyer, 1996).

Despite the proven benefits, most people – including more than 50% of American adults – do not get enough physical activity to provide health benefits (CDC, 2012). With this in mind, opportunities for exercise and healthful outdoor activity are more than expendable extras. Parks, trails, and open space resources take on new meaning and value. Opportunities for recreation and active transportation support the health and wellness of local residents, and have significant and quantifiable economic impacts. Active transportation provides an opportunity to incorporate regular physical activity into the daily routine.

Regular physical activity can make a person look and feel better, as well as reduce the risk of disease. Unhealthy diet and physical inactivity can cause or aggravate many chronic diseases and conditions, including type-2 diabetes, hypertension, heart disease, stroke, and some cancers (CDC, 2012). Regular physical activity is an important component of a healthy lifestyle, and aids in the prevention of many chronic diseases, disabling conditions and chronic disease risk factors (CDC, 2012).
Health care costs and insurance rates are escalating, causing serious impacts to the local economy. Lack of physical activity is a contributing factor to a growing number of serious illnesses and health problems among all age groups.

- In 2008, health care costs associated with obesity were estimated at $147 billion (CDC, 2012).
- Medical costs for people who are obese were $1,429 higher than for those of normal weight (CDC, 2012).

In addition to health-related costs, operating a personal automobile is very expensive.

- Of every dollar earned, the average household spends 18 cents on transportation, 94% of which is for buying, maintaining and operating cars, the largest source of household debt after mortgages (APTA, 2007).
- The average vehicular commuter spends over $7,500 per year on commuting expenses, which include the cost of gas, vehicle wear and tear, vehicle maintenance, and insurance.
- In comparison, the cost of operating a bicycle for a year is only $120.
- On average, switching from driving to walking and cycling saves $1.42/mile, money that can be re-invested in the local economy.

For some households, active transportation can even reduce the need for additional cars, which can be a yearly expense between $5,000 and $11,800 (APTA, 2007). With the money saved on a vehicle, or even just the additional parking, fuel and maintenance required to commute in a vehicle, an active commuter can pay for transit expenses, purchase a good quality bicycle, or buy new walking shoes, with money left over.

Better bicycling conditions will provide access to recreational and work destinations, schools, public transit, and local shops. This will, in turn, promote additional economic development in the vicinity of these destinations. The number of people bicycling can be a good indicator of a community’s livability - a factor that has a profound impact on attracting new residents, businesses, workers, and tourists all which contribute towards stimulating the economy.

In Portland, Oregon, it is estimated that by 2040, each dollar they have invested in active transportation infrastructure will result in more than $8 in benefits. Relatively modest investments – comparable to the construction cost of one mile of an urban 4-lane highway – led to tremendous growth in bicycling. Over time, this will produce secondary benefits in the form of fuel and health care savings worth at least eight times the upfront investment. Conversely, according to the RCA website, nearly every dollar we burn on gasoline leaves the Rochester area (RCA, 2012). By developing transportation programs and encouraging active transportation, the local economy would capture these potential savings and keep shoppers centrally located, resulting in increased community reinvestment.
ACTIVE TRANSPORTATION BENEFITS
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Improving transportation equity by cultivating better walking and bicycling conditions provides mobility for the one-third of people in the United States who do not have cars. This improves access to jobs, education, and health care.

- Cities that promote bicycling tend to retain youth, attract young families, and increase social capital.
- Improved bicycling conditions add to the vitality and quality of life of the community and provide access to recreational destinations across the region.
- Bicycling and walking increases opportunities for social interaction and contributes to a sense of community.
- Increased active transportation typically increases safety for motorists, bicyclists, and walkers. For example, in Portland, Oregon, bicycle crashes went down by 50%.
- Infrastructure encourages culturally and socially diverse communities to prosper and connect to the larger community.

Active transportation can reduce stress and allow for more community interaction. Riding a bicycle allows a commuter to choose a less busy route and by-pass traffic lights. Walkers and cyclists see more of their community than stoplights, white lines and car bumpers, and benefit from the stress relief that accompanies physical exercise.

Cities that promote bicycling tend to retain youth, attract young families, and increase social capital.
(Indianapolis Bicycle Master Plan)

Studies have shown that the longer the regular commute, the greater amount of stress that a commuter feels. Stress often leads to fatigue, headaches, and irritable moods, which can subsequently affect work performance and household dynamics. It is easier and less expensive to park a bike than a car, which further reduces the stress of commuting. In addition, a culture dependent on cars encourages urban sprawl, which destroys communities and keeps people isolated from one another.

Land use and building patterns exacerbate health problems by providing new, disconnected neighborhoods that have few opportunities for walking or biking. In addition, our lifestyles have become increasingly sedentary in our post-industrial society. Walking and bicycling provide an opportunity to simultaneously obtain the benefits of transportation and physical exercise.
This section contains an assessment of the existing conditions in the Town of Brighton. The topics discussed in this chapter include the characteristics of residents and the Town, existing pedestrian and bicycling conditions, accident data, existing trail conditions, priority intersections, and existing programs and policies.

A. Residents
Understanding the characteristics of the residents of the Town of Brighton is as important as the assessment of the existing infrastructure. The section contains information about pedestrian and bicycle facility users, local demographics, and the results of the active transportation survey conducted during the course of the project.

1. Pedestrian and Bicycle Facility Users
Pedestrian and bicycle facilities in the Town of Brighton will be used by people of all ages and skill levels. Emerging user groups, such as strollers, bicycle trailers, wheelchairs and adult tricycles, should be considered as possible facility users, but facility planning has been conducted with bicyclists and pedestrians considered to be the primary user groups.

Bicyclists. On average, bicyclists require a minimum width of 40 inches to operate. When bicyclists are traveling alongside motor vehicles, a width of five feet or more is recommended to allow bicyclists to safely maneuver.

While the minimum operating space and bicycle facility width remains relatively the same between users, the skills, confidence and preferences of bicyclists vary largely. The challenge in planning for bicycle facilities is designing for the diversity of user skills. According to the Federal Highway Administration (FHWA), the Federal policy goal for bicycling is “to accommodate current use and encourage increased use, while enhancing safety.”

The FHWA identifies the following types of bicycle users:
- Group A: Advanced Bicyclists
- Group B: Basic Bicyclists
- Group C: Children

Defining the bicyclist skill level through three groups and designing for the specific groups helps to refine roadway and path treatments. A description of the three different types of bicycle users by the American Association of State Highway and Transportation Officials (AASHTO) Guide for the Development of Bicycle Facilities follows.

Group A: Advanced Bicyclists. Group A is comprised of advanced or experienced riders who are generally using their bicycles as they would a motor vehicle. They are riding for convenience and speed and want direct access to destinations with minimal detours and delays. Advanced riders are typically comfortable riding with motor vehicles in traffic. They comprise the majority of the current users of collector and arterial streets and are best served by the following:

1. Direct and convenient access to destinations usually via the existing street and highway system.
2. The opportunity to operate at maximum speed with minimum delays.
3. Sufficient operating space on the roadway or shoulder to reduce or preferably eliminate the need for either the bicyclist or the motor vehicle operator to change position when passing.

Ideally for Group A riders, all roads would be “bicycle friendly.”
Group B: Basic Bicyclists. Group B is comprised of basic adult and teenage riders who may also be using their bicycles for transportation purposes, such as getting to the store or visiting friends. Group B bicyclists are less confident of their ability to operate in traffic without special provisions for bicycles. Basic riders prefer to avoid roads with fast and busy motor vehicle traffic unless there is ample roadway width to allow easy overtaking by faster motor vehicles. Thus, basic riders are comfortable riding on neighborhood streets and shared use paths and prefer designated facilities such as bike lanes or wide shoulder lanes on busier streets. Some will develop greater skills and progress to the advanced level, but there will always be many millions of basic bicyclists. Group B bicyclists prefer:

1. Comfortable access to destinations, preferably by a direct route, using either low-speed, low traffic-volume streets or designated bicycle facilities, avoiding routes with high-volume or high traffic speeds.
2. Well-defined separation of bicycles and motor vehicles on arterial and collector streets (bike lanes or shoulders) or separate bike paths.

Group B bicyclists would be best served by designated bicycle facilities on key routes through main travel corridors with lower volume rates and similar travel times.

Group C: Children. Group C bicyclists are children riding on their own or with their parents. This group may not travel as fast as their adult counterparts, but still require access to key destinations in their community, such as schools, convenience stores and recreational facilities. It is important to make sure children do not develop a false sense of security if they are encouraged to ride on a busy street. Group C bicyclists prefer the following:

1. Access to key destinations surrounding residential areas, including schools, recreation facilities, shopping, or other residential areas.
2. Residential streets with low motor vehicle speed limits and volumes linked with shared use paths and busier streets with well-defined pavement markings between bicycle and motor vehicles.
3. Well-defined separation of bicycles and motor vehicles on arterial and collector streets linked with shared use paths and other bicycle facilities.

Group C bicyclists would be best served by routes that provide access to key destinations, but keep them off of busy roads, as safety is more important than travel time.

Pedestrians. On average, two people walking side-by-side or passing one another generally require 4.67 feet of space, while two people in wheelchairs need a minimum of 5 feet to pass one another. While the minimum operating space and pedestrian facility width are relatively the same between users, the skills, confidence and preferences of pedestrians vary. These variations are mostly a result of differences in age and differences in physical, cognitive and sensory abilities.

The 2010 New York State Supplement to the National Manual on Uniform Traffic Control Devices (MUTCD) for Streets and Highways 2009 Edition mandates that crossings be designed to accommodate a walking speed of 3.5 feet per second. However, due to a high population of aging people, a walking speed of 3.0 feet/second may be more appropriate in the design of any crossing facility in the Town of Brighton.
The 2004 AASHTO Pedestrian Guide provides an overview regarding different types of pedestrians. It is more difficult to classify pedestrians into the same types of categories presented for bicyclists. Pedestrians exhibit a wide range of physical, cognitive, and sensory abilities and disabilities. All pedestrians are part of the transportation mix and should be anticipated in the design of pedestrian facilities. Table 4.1 lists some of the common characteristics of pedestrians at various ages.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Ages</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| Infants and Toddlers | 0-4 | - Learning to walk
 | | - Requires constant adult supervision
 | | - Developing peripheral vision, depth perception
 | | - Act impulsively and unpredictably |
| Young Children | 5-8 | - Increasing independence, but still requiring supervision
 | | - Limited peripheral vision and poor depth perception
 | | - Act impulsively and unpredictably |
| Preteens | 9-13 | - Susceptible to “darting out” into intersections
 | | - Poor judgment
 | | - Sense of invulnerability |
| High School Aged | 14-18| - Improved awareness of traffic environment
 | | - Poor judgment
 | | - Feel invincible |
| Adults | 19-40| - Active, fully aware of traffic environment |
| Middle-Aged Adults| 41-65| - Are still active
 | | - May experience a slowing of reflexes, range of motion, and observational skills |
| Senior Adults | 65+ | - Difficulty crossing street
 | | - Vision loss and reduced abilities under low light/night conditions
 | | - Difficulty hearing vehicles approaching from behind
 | | - High fatality rate if hit |

Both AASHTO and the FHWA note that there is no single “standard pedestrian” and that the transportation network should accommodate a variety of pedestrians. For example, children and adults perceive their surroundings differently. Children require adult supervision in order to navigate the transportation system safely and independently. Children sometimes walk more slowly than adults, and have a lower eye height.

Older adults also have different needs. This group of pedestrians requires more time to cross the street, desires more predictable surfaces, benefits from handrails in steep areas, and needs places to rest along their route. Older pedestrians are also more likely to be killed or seriously injured in a crash. Because we live in an aging population, the needs of older pedestrians will continue to increase.

In addition, some pedestrians have limited mobility. This can be due to physical disabilities, as well as carrying packages, pushing strollers, or otherwise transporting items. The ability to reach a destination depends on a person’s speed, coordination, endurance, and the types of obstacles, grades and cross-slopes he or she encounters along the way. Accessibility guidelines provide minimum specifications for accessibility that meet the needs of most people. However, exceeding the minimum standards will make environments accessible to more people.

1 AASHTO Pedestrian Guide, 2004; and FHWA Bicycle & Pedestrian Program.
Emerging User Groups. The following section briefly summarizes a study conducted by Bruce Landis, Theodore Petrisch, and Herman Huang and sponsored by the FHWA, “Characteristics of Emerging Road Users and Their Safety”, Publication No. FHWA-HRT-04-103, printed in October 2004. According to recent research, emerging road and trail users constitute an increasing portion of transportation system users. With the development of new technologies and changing demographics, devices such as kick scooters, inline skates, hand cycles, and recumbent bicycles are becoming more common than they were even ten years ago. Electric personal transporter devices (e.g., the Segway™) are relatively new technologies that are now appearing on paths and roadways around the country. Additionally, the American population is aging, and the number of people using mobility assistive devices (such as manual wheelchairs, powered wheelchairs, and powered scooters) is increasing. Types of emerging user groups include:

- Inline skates
- Kick scooters
- Strollers
- Recumbent bicycles
- Bicycle trailers
- Power wheelchairs
- Skateboards
- Electric bicycles
- Tandems
- Segway™
- Manual wheelchairs
- Assistive power scooters
- Adult tricycles
- Hand cycles

With the increase in the number of emerging users comes a greater need to design and build suitable facilities. Many communities throughout the United States have adopted the AASHTO Guide to the Development of Bicycle Facilities as a standard for bike lane, shared roadway, and shared-use trail design. As its title implies, the guide is written with bicyclists in mind, so its recommendations are based on the physical dimensions and operating characteristics of bicyclists. Emerging users have different characteristics from bicyclists, and as such, trails designed and built to accommodate bicyclists may not meet the needs of these emerging users.

The findings of this study demonstrate that there is great diversity in the operating characteristics of various road and trail user types. AASHTO’s design bicycle length of 6 feet and width of 30 inches were adequate for the majority of observed users. However, bicycle trailers and recumbent bicycles exceeded the design length. Power wheelchairs exceeded the design width. The recommended two-way trail width of 10 feet gave most users traveling single-file in opposite directions enough room to pass each other, though some only barely. The recommended two-way trail width of 10 feet was not wide enough for many user types to complete a three-point turn. The growing need to accommodate emerging users is not restricted to off-street shared-use trails. The results of this research are valuable in determining how to better accommodate emerging user groups.
2. Demographics

The population of the Town of Brighton grew and changed slightly between 2000 and 2010. The population grew by nearly three percent. In addition, certain age groups changed, as shown in Table 4.2.

<table>
<thead>
<tr>
<th>Table 4.2. Population Trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
</tr>
<tr>
<td>Residents - Under 14 Years</td>
</tr>
<tr>
<td>Residents - 15-24 Years</td>
</tr>
<tr>
<td>Residents - 25-49 Years</td>
</tr>
<tr>
<td>Residents - 50-64 Years</td>
</tr>
<tr>
<td>Residents - 65 Years and Above</td>
</tr>
</tbody>
</table>

Residents between the ages of 25 and 49 years of age continued to be the largest segment of the population, despite a 4% decrease in this group. The segments of the populations containing residents between 15 to 24 years of age, and 50 to 64 years of age each grew by 3%, respectively. And despite the nationwide trend showing an aging population, the percent of residents older than 65 years of age actually decreased in the Town of Brighton. The U.S. Census Bureau has recorded the following data regarding active transportation:

<table>
<thead>
<tr>
<th>Table 4.3. Active Transportation Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brighton</td>
</tr>
<tr>
<td>Workers* Who Biked to Work</td>
</tr>
<tr>
<td>Workers* Who Walked to Work</td>
</tr>
<tr>
<td>Workers* Who Work Within 15 Minutes Of Home (2000)</td>
</tr>
<tr>
<td>Mean travel time to work^2 (2000)</td>
</tr>
<tr>
<td>Residents Who Attend High School</td>
</tr>
</tbody>
</table>

* indicates workers who are over 16 years of age

In general, bicycling is a growing mode of transportation for recreation and commuting. However, walking and bicycling are not currently common ways to travel to work in the Town of Brighton. The statistics in Table 4.3 indicate that very few residents walk and bike to work. However, nearly half of all workers (over 16) in the Town of Brighton work less than fifteen minutes from home. In addition, students are potential walkers and bicycle users. According to the U.S. Census Bureau, 1,510 residents of the Town attend high school. High school students, as well as some elementary and middle school students, can walk and bike to school. Table 4.4 details the number of walkers in the Brighton Central School District, as of January 2012. See Figure 2 for an illustration of students who walk to school.

<table>
<thead>
<tr>
<th>Table 4.4. BCSD Students Who Walk to School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walkers</td>
</tr>
<tr>
<td>Brighton High School</td>
</tr>
<tr>
<td>Twelve Corners Middle School</td>
</tr>
<tr>
<td>French Road Elementary School</td>
</tr>
<tr>
<td>Council Rock Elementary School</td>
</tr>
<tr>
<td>Total BCSD Walkers</td>
</tr>
</tbody>
</table>

Source: Brighton Central School District, 2012

^2 Travel time to work refers to the number of minutes that it usually took the person to get from home to work each day, whether waiting for public transportation, riding in a car, or any other time spent related to getting to work.
EXISTING CONDITIONS ASSESSMENT

Figure 2

Locations of Students Walking to School by District

Legend

BCSD Schools
- Brighton High School
- Council Rock Elementary School
- French Road Elementary School
- Twelve Corners Middle School
- Twelve Corners MS Student(s)
- Council Rock ES Student(s)
- Brighton HS Student(s)
- French Road ES Student(s)
- Other Schools

Crossing Guard (per location)
- 1
- 2

School Districts
- Brighton Central School District
- Penfield Central School District
- Pittsford Central School District
- Rush-Henrietta Central School District

Rail Lines
- Active
- Abandoned
- Trails
- Water
- Recreation and Parkland

Note:
There are walkers to Indian Landing Elementary School, however, data was not available at the time of the study.
In addition, an inventory of bicycles and bicycle facilities was conducted at three schools in the Brighton Central School District. On three occasions, bicycles and bicycle racks were counted at Brighton High School, Twelve Corners Middle School, and French Road Elementary School. Figure 3 illustrates the location and number of facilities that were found at each school. In addition, bike racks are scarce in the surrounding Twelve Corners area.

All of this data suggests an opportunity to increase walking and bicycle ridership to work and school with the proper facilities.

3. Active Transportation Survey Results
An active transportation survey was used to gather information reflecting Brighton residents’ current levels of walking and bicycling activity, their attitudes toward walking and bicycling, and their insight into barriers that presently exist. The content was developed in collaboration with the Bike Walk Brighton Task Force and Town officials. Survey data was captured through the use of Survey Monkey, a third party online survey tool. The survey went live in March 2012 and will be active for one year. As of December 2012, more than 300 surveys had been received.

Approximately 75% of respondents are Brighton residents, while 25% are not. In contrast, about 30% of respondents work in Brighton, while more than 70% work elsewhere. Approximately half of the respondents consider themselves advanced bicyclists, while the other half of the respondents consider themselves basic bicyclists. The primary reason that respondents selected for choosing to walk or ride a bicycle was for exercise and personal health. Many people reported that their walking and bicycling varies by season, more dramatically so for bicycling than walking.

Members of the community feel that Brighton’s central location in the Rochester area offers good opportunities for creating bicycle commuter connections and easier access, not only through Brighton, but to surrounding neighborhoods and communities such as the Towns of Henrietta, Pittsford, Penfield, and the City of Rochester.

Responses from community members indicate that there is a great demand for better pedestrian access to destinations such as the University of Rochester/Strong Memorial Hospital, the Erie Canalway Trail, Marketplace Mall, Monroe Community College (MCC), Town of Brighton schools and parks, and the Twelve Corners area.

Despite the presence of school crossing guards, participants expressed frustration towards the lack of safety for students who commute on foot or by bike. Some suggestions from community participants include developing safe greenways/commuter corridors to school campuses to promote and support increased biking, walking and jogging within the student body. Additionally, there is a similar concern for safer pedestrian access to Town parks.

Survey participants also indicated a desire for developing safer pedestrian crossings at multi-lane street intersections, creating safety awareness, using speed humps or other traffic calming methods, offering pedestrian-only crossings at every traffic signal, and where feasible, developing new multi-use trails or bike lanes.

The greatest concern voiced by participants was the inadequacy of pedestrian mobility and safe bicycling conditions along Elmwood Avenue, Monroe Avenue, Westfall Road, Edgewood Avenue, Highland Avenue, and certain areas along Winton Road. The Twelve Corners neighborhood is also a concern to the community because of the high amount of vehicular traffic in proximity to the school and the surrounding shops and restaurants. Please see Appendix B for a detailed summary of survey results.
Brighton Central School District: Bicycle Facilities Inventory

Brighton High School

Approximate Bike Rack Location

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Bike Racks</th>
<th>Parked Bike Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.22.2010</td>
<td>10:30am</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>05.09.2010</td>
<td>11:00am</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>09.13.2010</td>
<td>11:30am</td>
<td>6</td>
<td>61</td>
</tr>
</tbody>
</table>

Twelve Corners Middle School

Approximate Bike Rack Location

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Bike Racks</th>
<th>Parked Bike Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.22.2010</td>
<td>10:45am</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>05.09.2010</td>
<td>11:15am</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>09.13.2010</td>
<td>11:45am</td>
<td>5</td>
<td>53</td>
</tr>
</tbody>
</table>

French Road Elementary School

Approximate Bike Rack Location

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Bike Racks</th>
<th>Parked Bike Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.22.2010</td>
<td>11:00am</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>05.09.2010</td>
<td>11:30am</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>09.13.2010</td>
<td>12:00pm</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

Note: Bikes were locked to fences and handrails in addition to bike racks at the High School, Middle School and Elementary School. This might indicate the need for additional bike racks or bike racks in additional locations.
B. Town Characteristics

The physical characteristics of a community can impact the development of bicycle and pedestrian facilities. The physical characteristics of Brighton make it promising for the growth of an Active Transportation network.

1. Geography, Topography, and Climate

Geography, topography and climate all influence the way in which people walk and ride in a community.

Geography. The Town of Brighton, New York is bordered by the City of Rochester to the north, the Town of Henrietta to the south, the Genesee River (and the Town of Chili) to the west, and the Towns of Pittsford and Penfield to the east. Brighton is a connecting link between the City of Rochester and suburbs to the south and east, and is therefore of central importance in a growing regional Active Transportation system. Brighton is located at 43°7′24″N 77°34′5″W in Monroe County.

Nowhere more than three miles wide, the Town stretches in a crescent shape from Indian Landing at the northeast corner to the Genesee River in West Brighton. The long axis of the Town is roughly 5.5 miles from east to west, and the short axis is roughly 2.5 miles from north to south. As the crow flies, the Town is about 8 miles from the northeast corner to the southwest corner. The Town is the third smallest in Monroe County.

Topography. Land forms in and around Brighton are the result of ice sheets during the Pleistocene epoch. The retreating ice sheets reached a standstill at what is now the southern border of Rochester, melting at the same rate as they were advancing, depositing sediment along the southern edge of the ice mass. This created a line of hills, including (from west to east) Mount Hope, the hills of Highland Park, Pinnacle Hill, and Cobb’s Hill.

Those glacial formations, along with the Irondequoit Creek Valley, comprise the most significant topography in the Town of Brighton. Most areas of the Town are nearly flat or gently sloping. Elevations range from 256’ in Ellison Park to 613’ at the east end of Summit Drive. The moderate topography is manageable by pedestrians and bicyclists of various ages and ability levels.

Climate. Brighton lies in the humid continental climate zone and has four distinct seasons. Summer sees generally comfortable temperatures that usually stay in the 80-85°F range, accompanied by moderate to high humidity. Heat waves are not uncommon during a typical summer, with temperatures in the 90-100°F range. Precipitation is plentiful year round. The average rainfall is 34 inches, and average snowfall is 100.5 inches.

Winter conditions can present some special challenges for walkers and riders: fewer hours of daylight, lower visibility, colder temperatures, and ice and snow on paved surfaces. Maintenance and snow removal are important factors to consider. Brighton has an average of 66 snowy days per year. Conversely, 299 days (on average) are snow-free.

2. Land Use and Development

Originally settled in 1790 and formally established in 1814, the Town of Brighton has the distinction of being one of the oldest towns in Monroe County. Named for Brighton, England, the Town remained a farming and brick-making community until the 20th century, when the community began its evolution into a suburban residential area.
Early in the twentieth century, Brighton's extensive farm tracts began to give way to the suburban housing that would characterize the Town throughout the 1900s. Several factors contributed to this transformation. The influx of immigrants to the City of Rochester in the second half of the nineteenth century coupled with large-scale urban industrial development contributed to the noise and crowded living conditions in the city. Those who were able purchased property in the country, accessible by private vehicle.

At first, this privilege of commuting to work and shopping in the city was reserved to the very wealthy. Later in the 1800s, horse-drawn omnibuses and trolleys put the countryside in reach of everyone. Transportation developments, especially the private automobile, contributed to Brighton's housing development. Brighton's growth continued throughout the twentieth century.

During the nineteenth and twentieth centuries, the City of Rochester appropriated land from the Town of Brighton on multiple occasions. Perhaps the most controversial annexation occurred in 1905 when the City acquired the Village of Brighton, an area near the intersection of present-day Winton Road and East Avenue. As a result, the Town of Brighton has lacked a traditional village center for more than a century. The present-day central community hub is the Twelve Corners, named for the three intersecting roads, Winton Road, Monroe Avenue and Elmwood Avenue, which define 12 distinct corners.

3. **Population Density and Local Destinations**

The Town has a total area of 15.6 square miles. With the exception of a few significant parcels of land, the Town is completely developed, with homes, office buildings and businesses occupying former agricultural land. With a population of about 36,000 people, the average population density is 2,302 people per square mile. The compact configuration of the Town is an advantage for creating an Active Transportation network.

Priority destination for pedestrians and bicyclists in Brighton include public and private schools, colleges and universities, parks and open space, places of worship, community centers and commercial areas. The Erie Canalway Trail in Brighton is both a popular destination and a functional piece of Active Transportation infrastructure.

The distance between many destinations tends to be very modest (see Figures 4 and 5). Primary destinations in Brighton, such as parks and schools, are evenly distributed throughout the Town. The greatest concentration of destinations, however, is in the Twelve Corners area. The Twelve Corners contain retail, office, and commercial destinations, as well as schools and places of worship, all within walking distance of many residential neighborhoods.

Outside of the Twelve Corners, some areas of Brighton host “Destination Clusters” that include multiple destinations in close proximity. One example is the Meridian Centre area with the Erie Canalway Trail, an office development, a Town park, and a senior living facility. Another example is the Corbett's Glen area with a Town park, elementary school, County park, and temple.

As an older inner ring suburb, Brighton is in close proximity to downtown Rochester. In addition, the Town is near the University of Rochester (U of R) and Rochester Institute of Technology (RIT), and has Monroe Community College (MCC) within Town borders. The distance from the Twelve Corners to downtown, MCC, and the U of R is each about 3 miles. A number of key destinations were identified in Figure 4, and the distances between them were mapped. The average distance between these destinations was only 3.5 miles. Many trips are short enough to be undertaken by walking or bicycling, if safe and convenient active transportation facilities were available.
EXISTING CONDITIONS ASSESSMENT

Figure 4

Town of Brighton Destinations

Legend
- Brighton Central School District
- Other Brighton Schools
- College / Universities
- Parkland
- Trails
- Open Space Opportunity
Destinations and Distances

<table>
<thead>
<tr>
<th>Distance in miles from point to point</th>
<th>Brighton H.S.</th>
<th>Brighton Park</th>
<th>Corbett’s Glen</th>
<th>French Road Elementary</th>
<th>Lynch Woods</th>
<th>MCC</th>
<th>McQuaid H.S.</th>
<th>Meridian Center</th>
<th>Mercy H.S.</th>
<th>Town Hall</th>
<th>Average Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Brighton H.S.</td>
<td>0</td>
<td>2.1</td>
<td>3.3</td>
<td>1.6</td>
<td>4.2</td>
<td>3</td>
<td>1.3</td>
<td>1.5</td>
<td>2.2</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2 Brighton Park</td>
<td>2.1</td>
<td>0</td>
<td>5.2</td>
<td>2.6</td>
<td>2.9</td>
<td>1.7</td>
<td>1</td>
<td>2</td>
<td>4.8</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>3 Corbett’s Glen</td>
<td>3.3</td>
<td>5.2</td>
<td>0</td>
<td>3.4</td>
<td>6.5</td>
<td>5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.8</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>4 French Road Elementary</td>
<td>1.6</td>
<td>2.6</td>
<td>3.4</td>
<td>0</td>
<td>3.6</td>
<td>2.3</td>
<td>2.1</td>
<td>0.6</td>
<td>3.7</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>5 Lynch Woods</td>
<td>4.2</td>
<td>2.9</td>
<td>6.5</td>
<td>3.6</td>
<td>0</td>
<td>1.4</td>
<td>3.1</td>
<td>3.2</td>
<td>6.5</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>6 MCC</td>
<td>3</td>
<td>1.7</td>
<td>5</td>
<td>2.3</td>
<td>1.4</td>
<td>0</td>
<td>2</td>
<td>1.9</td>
<td>5.2</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>7 McQuaid H.S.</td>
<td>1.3</td>
<td>1</td>
<td>3.5</td>
<td>2.1</td>
<td>3.1</td>
<td>2</td>
<td>0</td>
<td>1.6</td>
<td>3.3</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>8 Meridian Center</td>
<td>1.5</td>
<td>2</td>
<td>3.5</td>
<td>0.6</td>
<td>3.2</td>
<td>1.9</td>
<td>1.6</td>
<td>0</td>
<td>3.7</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>9 Mercy H.S.</td>
<td>2.2</td>
<td>4.8</td>
<td>0.8</td>
<td>3.7</td>
<td>6.5</td>
<td>5.2</td>
<td>3.3</td>
<td>3.7</td>
<td>0</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>10 Town Hall</td>
<td>0.5</td>
<td>1.9</td>
<td>2.6</td>
<td>1.9</td>
<td>4</td>
<td>2.7</td>
<td>1</td>
<td>1.5</td>
<td>2.5</td>
<td>0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Distances

- **Longest Trip**: 7.7 Miles
- **Shortest Trip**: 0.7 Miles
- **Average Trip**: 2.5 Miles

Overall Average: 2.5 Miles

Not to scale

Prepared by **edr Companies** in association with **Sprinkle Consulting** and **SRF & Associates**
C. Existing Pedestrian Conditions

The existing pedestrian conditions in the Town of Brighton were assessed through an inventory of sidewalks, pedestrian level of service, and shared-use trails. The sidewalk inventory and pedestrian level of service are discussed in this section, and the shared-use trails are described later in this chapter.

1. Existing Infrastructure

The presence of sidewalks was assessed along arterial and collector streets in the Town of Brighton. 43.6 miles of roadway were assessed in the study. Of 87.2 miles of possible sidewalk (2 sidewalks on each side x 43.6 miles of roadway), 36.5 miles of sidewalk were found along those roadways. Figure 6 illustrates existing sidewalk locations, and Figure 7 analyzes the presence or absence of sidewalks throughout the system. The percentages shown in Figure 7 are an estimate of total sidewalk coverage on one side of the roadway. They are to be used as a quick reference and guide for locating gaps in the sidewalk network. Field investigations are needed to identify the exact locations and gaps in the sidewalk network.

2. Level of Service and Existing Operating Conditions

The Pedestrian Level of Service Model indicates how safe and/or comfortable pedestrians feel while walking alongside a particular roadway. This evaluation of walking conditions is based on user perceptions of a wide range of pedestrians and has been applied on tens of thousands of miles of roads throughout the United States. The Model takes into account both traffic characteristics and roadway geometry, including traffic volume, traffic speed, sidewalk presence/width, roadway width, presence/width of a buffer area, and presence of barriers (on-street parking and street trees) between the street and the walking environment. It is the accepted methodology for evaluating walking conditions contained in the 2010 Highway Capacity Manual.

These factors are used in calculating an LOS letter and numerical score for each roadway segment. The scores are listed on a letter scale from A-F and a numerical scale from ≤ 1.5 to > 5.5. Ultimately, these results can assist communities, engineers, and planners as an effective analytical tool in the identification of segments that have the greatest need for the implementation or improvement of bicycle and pedestrian facilities.

Field data collection focused on acquisition of roadway elements needed to conduct the existing conditions evaluations via the bicycle and pedestrian level of service models. The observers subdivided segments at locations where significant changes to the roadway cross section occur. In addition to level of service data (number and width of lanes; posted speed limit; presence, width, and separation of bicycle and pedestrian facilities; on-street parking; and pavement condition), additional elements were collected to assist in the eventual identification of potential bicycle facility improvements. These supplemental data items include total pavement width (to identify restripe candidates), signal density (to assist in the identification of road diet candidates), and presence of curbs (to determine the feasibility of adding paved shoulders).

Bicycle and pedestrian level of service data are used by planners and engineers in a variety of planning and design applications. Results can be used to provide a snapshot of existing bicycling and walking conditions, identify roadways that are candidates for reconfiguration for bicycle and pedestrian facility improvements, conduct a benefits comparison among proposed facilities and roadway cross-sections, and to prioritize and program roadways for such improvements.

Figure 8 illustrates the pedestrian level of service throughout the Town of Brighton. The Town-wide average for pedestrian LOS was found to be 3.7, an average score of D. None of the roadway segments earned an A, and only a few earned a B or an F. Most of the segments earned a C, D, or an E. Figure 9 juxtaposes the level of service analysis with the location of several community schools. Appendix C provides additional information about the Pedestrian Level of Service model, and Appendix D provides the pedestrian LOS data sheets for all roadways that were analyzed in the course of the study.
EXISTING CONDITIONS ASSESSMENT

Figure 6

System Map of Sidewalks - Arterials and Collectors

LEGEND
- Rail Lines
 - Active
 - Abandoned
- Trails
- Water
- Recreation and Parkland
- Sidewalks

Note:
Highland Avenue between Hemingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
EXISTING CONDITIONS ASSESSMENT

Figure 7

Sidewalk Network Gap Presence

Sidewalk Gap with % of presence
- ●●● Gap on two sides of the road
- ●● Gap on one side of the road
- ● No gaps

Note:
Highland Avenue between Hemingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
Figure 8
Pedestrian Level of Service

Note:
Highland Avenue between Homingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
EXISTING CONDITIONS ASSESSMENT

Figure 9

Pedestrian Level of Service: Adjacent to Schools Eligible for the Safe Routes to School Program

Level of Service (LOS)

- A
- B
- C
- D
- E
- F

Note:
Highland Avenue between Hemingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
D. Existing Bicycling Conditions

The existing bicycling conditions in the Town of Brighton were assessed through an inventory of on-road conditions via bicycle level of service, and off-road conditions via shared-use trails. The bicycle level of service is discussed in this section, and the shared-use trails are described later in this chapter.

1. Level of Service and Existing Operating Conditions

The Bicycle Level of Service Model indicates how safe and/or comfortable bicyclists feel while riding on a particular roadway. This evaluation of bicycling conditions is based on user perceptions of a wide range of bicyclists and has been applied on more than 100,000 miles of roads throughout the United States. The Model takes into account both traffic characteristics and roadway geometry, including traffic volume, traffic speed, prevalence of trucks, outside lane width, paved shoulder or bike lane width, and pavement condition. It is the accepted methodology for evaluating bicycling conditions contained in the 2010 Highway Capacity Manual.

These factors are used in calculating an LOS letter and numerical score for each roadway segment. The scores are listed on a letter scale from A-F and a numerical scale from ≤ 1.5 to > 5.5. Ultimately, these results can assist communities, engineers, and planners as an effective analytical tool in the identification of segments that have the greatest need for the implementation or improvement of bicycle and pedestrian facilities.

Field data collection focused on acquisition of roadway elements needed to conduct the existing conditions evaluations via the bicycle and pedestrian level of service models. The observers subdivided segments at locations where significant changes to the roadway cross section occur. In addition to level of service data (number and width of lanes; posted speed limit; presence, width, and separation of bicycle and pedestrian facilities; on-street parking; and pavement condition), additional elements were collected to assist in the eventual identification of potential bicycle facility improvements. These supplemental data items include total pavement width (to identify restripe candidates), signal density (to assist in the identification of road diet candidates), and presence of curbs (to determine the feasibility of adding paved shoulders).

Bicycle and pedestrian level of service data are used by planners and engineers in a variety of planning and design applications. Results can be used to provide a snapshot of existing bicycling and walking conditions, identify roadways that are candidates for reconfiguration for bicycle and pedestrian facility improvements, conduct a benefits comparison among proposed facilities and roadway cross-sections, and to prioritize and program roadways for such improvements.

The roadway network study area included all arterials and collectors in the Town of Brighton, a total of 43.6 miles. Figure 10 illustrates the bicycle level of service throughout the Town of Brighton. The Town-wide average for bicycle LOS was found to be 3.3, an average score of C. No roadway earned an F, but a few earned an A. Most roadways were found to be a B, C, D or E. Figure 11 overlays the level of service analysis with the location of several community schools. Appendix C provides additional information about the Bicycle Level of Service model, and Appendix D provides the bicycle LOS data sheets for all roadways that were analyzed in the course of the study.
EXISTING CONDITIONS ASSESSMENT

Figure 10

Bicycle Level of Service

Note:
Highland Avenue between Hemingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
Figure 11
Bicycle Level of Service: Adjacent to Schools Eligible for the Safe Routes to School Program

Note:
Highland Avenue between Hemingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
E. Safety Evaluation

A safety evaluation was conducted for the Town of Brighton using 10 years of historical data from the Genesee Transportation Council. Pedestrian and bicycle crash locations were each mapped in order to identify areas that may present opportunities to improve bicyclist and pedestrian safety. This safety assessment was a key component in selecting the Priority Intersections, as well as making recommendations for Priority Sidewalk Additions.

1. Pedestrian Crash Density

Figure 12 illustrates that the following areas exhibit relatively higher levels of pedestrian crash density:

- Twelve Corners
- Monroe Avenue and Clover Street
- South Clinton Avenue and Elmwood Avenue
- West Henrietta Road and Crittenden Road
- I-390 and East Henrietta Road
- Monroe Avenue and Brooklawn Drive (and generally between Winton Road and Edgewood Avenue)
- East Avenue, Clover Street, and Penfield Road

2. Bicycle Crash Density

Figure 13 illustrates that the following areas exhibit relatively higher levels of bicycle crash density:

- Twelve Corners
- East Avenue, South Landing Road, and Elmwood Avenue/Linden Avenue
- I-590 and Monroe Avenue
- South Clinton Avenue and Elmwood Avenue (and west along Elmwood)
- South Clinton Avenue and Highland Avenue
- I-390 and East Henrietta Road
- East Avenue, Clover Street, and Penfield Road
- Monroe Avenue and Edgewood Avenue

It is important to note that areas with higher crash densities may reflect higher rates of usage (i.e., more pedestrians crossing the street and more bicyclists traveling along the roadway) and do not necessarily indicate that these areas are less safe for an individual bicyclist or pedestrian passing through. However, even if the higher crash densities reflect only the higher rates of usage, these areas should still be considered for the prioritization of safety enhancements on the basis of relative cost effectiveness as they would serve larger numbers of users than areas with lower rates of usage. All recommendations should be sensitive to the context of the location, as well as the professional judgment of the individuals developing and implementing said recommendations.
Figure 12

Crash Density Analysis: Pedestrian Incidents

- Pedestrian Collision
- College
- Schools
- Parks

Density

- Few Crashes
- Many Crashes

Few crashes indicate one singular crash. Many crashes indicate multiple crashes in close proximity of one another.

Note:
10-year historical data provided by the Genesee Transportation Council.
Figure 13

Crash Denisty Analysis: Bicycle Incidents

Few crashes indicate one singular crash. Many crashes indicate multiple crashes in close proximity of one another.

Note:
10-year historical data provided by the Genesee Transportation Council.
F. Shared-Use Trails

The Town of Brighton has two key shared-use trails that provide opportunities for walking and bicycling for transportation or recreation. Both the Erie Canalway Trail and the Lehigh Valley Trail are regional trails that extend beyond Town borders. Both trails were assessed in late Fall of 2011. Detailed trail inventory sheets can be found in Appendix E, with information regarding:

- Trail surface material, width, and condition;
- Striping;
- Trail alignment and sight distance;
- Amenities (seating, lighting, signage, etc);
- Points of Interest;
- Trailhead or access point(s);
- Road crossings; and
- Other considerations, such as encroachments, property issues, special opportunities/constraints.

1. Erie Canalway Trail

Within the Town of Brighton, the Erie Canalway Trail travels east to west between Edgewood Avenue and the Lehigh Valley Trail (near the U of R). The trail is asphalt for the entire length. Between Edgewood Avenue and the Brighton Park pathway, the trail is 12 feet wide with a center stripe in good to excellent condition. From just west of Brighton Park to the Lehigh Valley Trail, the trail is nine feet wide, without a center stripe, in fair to good condition. The trail is generally in good condition, and receives substantial use. Sight distances are generally quite good, except for a few brief locations. The trail connects a number of destinations, but wayfinding is difficult, with little signage to direct users to or from the trail or other points of interest. Wayfinding signage is a key recommendation along the trail.

2. Lehigh Valley Trail

Within the Town of Brighton, the Lehigh Valley Trail travels north to south between the Erie Canalway Trail (near the U of R) and Brighton-Henrietta Townline Road. Between the Canalway Trail and East River Road, the trail is 12 feet wide and composed of gravel. From East River Road to Townline Road, the trail is 8 feet wide and composed of stonedust. The trail is generally in good condition, with no striping, and good to excellent sight distance. The trail connects various points of interest, including commercial areas, universities, and open space. The trail does not have any seating, lighting, and little signage. Parking, wayfinding signage, trailheads, and crossing/access improvements are needed.
G. Priority Intersections

In addition to roadway and sidewalks, the Existing Conditions Assessment for BikeWalkBrighton included an analysis of priority intersections. Intersections were identified based on their proximity to destinations, level of use, and likelihood that focused safety enhancements would benefit the greatest number of users.

1. Locations

Ten priority intersections were identified in the Town of Brighton. As illustrated in Figure 14, the locations selected for detailed analysis included:

- Winton Road and Monroe Avenue (Twelve Corners)
- Elmwood Avenue and Winton Road (Twelve Corners)
- Elmwood Avenue and Monroe Avenue (Twelve Corners)
- South Clinton Avenue and Elmwood Avenue
- East Avenue, Clover Street, and Penfield Road
- Landing Road and Blossom Road
- Monroe Avenue and Brooklawn Drive
- Monroe Avenue and Westfall Road
- Monroe Avenue and Clover Street
- West Henrietta Road and Crittenden Road

Intersections were selected that could serve as examples for other intersections that were not studied. It is important to note that in selecting intersections, consideration was given to students, who may be walking and bicycling to school facilities, as well as senior citizens, who have active transportation needs to get to community services and health care providers. Bicycle and pedestrian facilities are particularly important to both of these groups.

2. Needs Assessment

Intersection safety assessments involved field investigations that considered the physical and operational characteristics of each location, pertinent to pedestrian and bicycle safety. Elements that were investigated include, and are not limited to: sidewalks, crosswalks, crossing widths, intersection geometry and corner radii, traffic controls, lighting, sight lines and other physical conditions; signal operations, phasing and timing related to pedestrian safety, turning volumes, traffic operations, movements and speeds.

The objectives of investigation and recommendations include the following:

- minimize conflicts between different modes of transportation;
- separate conflicts;
- improve visibility between modes; and
- elevate motorist awareness of pedestrian and bicycle activity.

The specific details of each intersection assessment can be found on Sheets 1-8 of Figure 17, presented later in the plan in combination with recommended improvements.

H. Existing Programs and Policies

Existing programs and policies related to zoning, engineering standards, outreach and education, maintenance, and enforcement were assessed. The assessment of these programs and policies, where appropriate, can be found side-by-side with recommended improvements in the Recommendations chapter.

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
EXISTING CONDITIONS ASSESSMENT

Figure 14
Priority Intersection Locations

1. Winton Road & Monroe Avenue
2. Elmwood Avenue & Winton Road
3. Elmwood Avenue & Monroe Avenue
4. South Clinton Avenue & Elmwood Avenue
5. East Avenue, Clover Street & Penfield Road
6. Landing Road & Blossom Road
7. Monroe Avenue & Brooklawn Drive
8. Monroe Avenue & Westfall Road
9. Monroe Avenue & Clover Street
10. West Henrietta Road & Crittenden Road
Chapter 5: Peer City Review Summary
A. Peer City Review Summary

An excellent way to identify best practices for the Town of Brighton is to look at other communities around the country that have created robust environments for walking and bicycling.

The Peer City Review for BikeWalkBrighton compiles Active Transportation ideas and best practices from some progressive communities with characteristics similar to Brighton. The foundation for this report is a peer city review conducted for the City of Rochester’s Bicycle Master Plan in 2010. Cities identified by the Rochester project stakeholders included Boulder, Colorado; Montreal, Quebec; Minneapolis, Minnesota; and Madison, Wisconsin.

It is notable that cold weather climates need not deter the advancement of Active Transportation. In 2010, Minneapolis was ranked as the #1 Bike-Friendly City by Bicycling magazine. The city has also received a silver “Bicycle Friendly Community” award from the League of American Bicyclists.

Due to the inherent differences between the City of Rochester and the Town of Brighton, and because BikeWalkBrighton includes pedestrians, additional cities were added and each of the original peer cities was reviewed for pedestrian facilities and programs. Information from other cities, including Seattle, Washington and Tucson, Arizona are also included where relevant.

The Peer City Review includes inner-ring type suburban communities similar to the Town of Brighton. The new peer suburban communities are Westminster, Colorado; Edina, Minnesota; Fitchburg, Wisconsin; and Middleton, Wisconsin. Much of the information about each city’s program is available in the city’s transportation plans and/or bicycle or pedestrian master plans. Additional details, typically on implementation, were added based on interviews with the bicycle and pedestrian coordinators from the respective cities.

For each of the Peer Cities, information was collected in the following categories:

1. Bicycle Infrastructure including bike lanes, paved shoulders, shared use paths, shared lane markings, and bike boulevards;
2. Bicycle Services including bike parking, bike sharing, end-of-trip facilities, and route/wayfinding signage;
3. Municipal code language that supports pedestrians and bicycling;
4. Pedestrian infrastructure;
5. Bicycle and Pedestrian Education and outreach programs;
6. Municipal staffing commitment;
7. Private sector partnerships and/or incentives;
8. Snow removal strategies; and
9. Strategies for dealing with on-street parking when attempting to retrofit roadways.

Signage examples in Boulder, CO
B. Highlights
The Peer City Review provides an extensive catalog of proven best practices for supporting walking and riding. Following are a few selected examples that may be of particular relevance to BikeWalkBrighton. The complete review can be found in Appendix F.

Montreal has developed a 19 mile network called the White Network that is maintained all year long. Since 2007, in addition to routine maintenance, this series of bike paths has been plowed and kept clear of snow allowing for use during all seasons. An additional 39 miles are planned for this network.

The City of Boulder, Colorado is installing bike corrals as a year-long demonstration project to evaluate use, maintenance, traffic safety and public opinion of the treatment. Bike corrals provide seasonal or permanent bike racks in an on-street parking space or parking lot space. Bike corrals are also being proposed for Montreal, where they will be used from spring to the fall and removed in the winter to facilitate snow removal. On-street bicycle parking, similar to a bike corral, is being used in Seattle.

In Edina, Minnesota, a number of bicycle racks have been installed by local Eagle Scouts.

Minneapolis, Minnesota has an extensive bicycle parking program and has published a Bike Racks and Lockers Map to help bicyclists find available parking. Every office building in Minneapolis is required by law to provide bicycle storage. Minneapolis also has specific design guidelines for pedestrian zones, street corners, bus stops, and wayfinding.

In Westminster, Colorado provisions for bicycle parking exist in the municipal zoning code.

Seattle, Washington requires bicycle commuter shower facilities for buildings over 250,000 square feet gross floor area.

In Boulder, Colorado the City runs an annual campaign stressing the importance of using bike lights. Lighten Up Boulder teams the City with the University of Colorado and local merchants to offer discounts on bike light accessories at participating merchants.

Middleton, Wisconsin has submitted a Bicycle Friendly Community Application and is waiting to hear the League of American Bicyclists’ review and rating.

Other active transportation practices can be found in the full Peer City Review, found in Appendix F.
This section describes the active transportation facilities considered for the Town of Brighton and their potential impacts. Multiple design, program and policy solutions can be used to address bicycle and pedestrian needs. Thus, for each active transportation alternative, reviewing the design details, impacts, and viability for the Town of Brighton is critical to selecting appropriate solution.

For this report, the active transportation facilities are categorized as on-street, off-street, or program and policy alternatives. On-street alternatives include all possible strategies within the roadway, such as bicycle lanes or a road diet. Off-street alternatives deal with the area from the curb to the front of a building with the main focus on the pedestrian experience. Program and policy alternatives provide strategies for zoning changes, educational programs, enforcement, maintenance, program effectiveness, and security. A summary of design details and benefits for each facility that was considered is found in the Design Elements for Active Transportation Matrix (Table 6.1) included in this section.

Also included in the Design Elements for Active Transportation Matrix are different impacts for each alternative. In addition to the typical measure of impact to the bottom-line, each alternative should be assessed based on different user and sustainability impacts. The subsections below explain the impacts reviewed and the matrix shows how each alternative impacts the budget, different users, and social and environmental aspects. Evaluating each alternative’s impacts on budget, users and sustainability ensures a selection process that clearly, consistently, and comprehensively assesses the tradeoffs between different pros and cons of each alternative.

Each alternative was evaluated based on these three categories, as well as their appropriateness for addressing the issues specific to the Town of Brighton. Based on input from the Bike Walk Brighton Task Force and the community, the consultants selected which alternatives were the most appropriate.

A. Cost Impacts

Impact to the bottom-line is a key consideration for selecting an active transportation alternative for implementation. The cost of implementing alternatives can range depending on cost of material, labor and design. The Design Elements for Active Transportation Matrix (Table 6.1) provides a cost estimate range for each alternative considered. Cost estimates are grouped in the following three subcategories:

- $ - Low cost: under $10,000
- $$ - Medium cost: $10-50,000
- $$$ - High cost: > $50,000
B. User Impacts
A key component to designing active transportation elements is to understand that different users will likely have different expectations. Some design elements may be beneficial for certain user groups and detrimental to others. For example, one alternative, such as a refuge island, may improve safety for pedestrians or motorists, but may have a negative impact on bicyclists. The different user groups considered for each alternative include: pedestrians, bicyclists, motorists, transit, neighbors, and emergency vehicles. The different user preferences for active transportation alternative are listed below.

1. Pedestrian Preferences
 - Buffering from moving vehicles
 - Aesthetically pleasing surroundings and amenities
 - Safe environment
 - Shorter walking distances
 - Access to community facilities and destinations

2. Bicyclist Preferences
 - Well-connected network of bicycling facilities
 - Safe travel routes
 - Direct routes
 - Access to community facilities
 - Access to bicycle parking facilities

3. Motorist Preferences
 - Minimal traffic delay and conflicts
 - Parking and access to businesses and community facilities
 - Consistently designed facilities

4. Transit Driver and Passenger Preferences
 - Space to operate and maneuver vehicles
 - Minimal conflicts and delays
 - Multi-modal facilities
 - Bus stop access and facilities

5. Neighbor Preferences
 - Neighborhood connectivity
 - To feel safe and secure
 - Access to property, businesses, and community facilities

6. Emergency Vehicle Operator Preferences
 - Space to operate and maneuver vehicle
 - Minimal conflicts and delays
 - Safe travel routes
The Design Elements for Active Transportation Matrix (Table 6.1) shows the review of each alternative’s impact (positive, negative, mixed, or no impact) for each user group. For example, bicycle lanes provide bicyclists with their own lane, which has a positive impact on all user groups by reducing conflicts in the road between bicyclists and motorists, transit, or emergency vehicles, and on the sidewalk between bicyclists and pedestrians or neighbors.

C. Sustainability Impacts
Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs. As a form of development, active transportation improvements can have a positive or negative impact on the community, quality of life, livability, and the environment. Thus, each alternative considered for the Town of Brighton was evaluated by the following sustainability measures:

1. Reduces Energy Consumption by:
 - Supporting non-motorized travel,
 - Supporting energy efficient movement of people and goods, and/or
 - Using resources with lower operations and maintenance requirements.

2. Reduces Consumption of Material Resources by:
 - Using recycled materials in construction,
 - Requiring less infrastructure in design solution, and/or
 - Increasing durability and life of design solution.

3. Reduces Impacts to Environmental Resources by:
 - Minimizing impact on natural environment,
 - Improving outdoor air quality,
 - Encouraging and supporting biodiversity, and/or
 - Reflecting historical and cultural context.

4. Supports Healthy Urban Communities by:
 - Incorporating features that support community and livability,
 - Incorporating features that support public services and adjacent land uses, and/or
 - Incorporating features that enhance public health, safety, and security.

5. Supports Sustainability During Implementation by:
 - Supporting local economic, social, and resource management needs during construction, and/or
 - Reducing environmental and community impacts during construction. (Bevan, 2007)

The Design Elements for Active Transportation lists whether an alternative has a positive, negative, mixed (positive and negative), or no impact for each sustainability measure. The pages following the matrix provide detailed descriptions and illustrations for selected alternatives from the Active Transportation Toolbox.
<table>
<thead>
<tr>
<th>DESIGN ELEMENT</th>
<th>Cost Impacts</th>
<th>User Impacts</th>
<th>Sustainability Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Boulevards</td>
<td>$-$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle Lanes: Standard</td>
<td>$-$$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle Lanes: Buffered</td>
<td>$-$$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle Lanes: Colored</td>
<td>$-$$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Crosswalks: High Visibility</td>
<td>$-$</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Crosswalks: Raised</td>
<td>$$$-$</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>DESIGN ELEMENT</td>
<td>DETAILS & BENEFITS</td>
<td>Cost Impacts</td>
<td>User Impacts</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimated Costs</td>
<td>Pedestrians</td>
</tr>
<tr>
<td>On-Street Alternatives, Continued</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Curb Extensions | - Reduces crossing distances and may reduce vehicular speeds
- Creates protected parallel parking | $$ | + | - | +/- | +/- | +/- | +/- | +/- | +/- | N |
| Cycle Tracks | - A bikeway separated from the travel lanes by a physical element, which is often on-street parallel parking
- Cycle tracks require very careful design, and providing adequate sight distances at conflict areas is critical
- Ensuring that motorists yield to bicyclists on the cycle track, where appropriate, is problematic
- Appear to have a positive influence on safety, but some cyclists have found them to be problematic due to pedestrian conflicts, motorists using them as loading zones, and increased delays at intersections
- Potential conflicts can be minimized using innovative design treatments - chicanes, enhanced sight triangles
- Cycle tracks are a nonstandard treatment | $$ - $$ | +/- | + | +/- | + | +/- | +/- | +/- | +/- | +/- | + |
| On-Street Parking | - Shields pedestrians from moving traffic
- Car doors create potential hazard when used with bicycle lanes; wide bicycle lanes help to alleviate this hazard
- Reverse angle parking puts bicyclist in driver’s sightline, but requires more space and buffering than parallel parking | $$ - $$ | + | - | +/- | +/- | + | - | +/- | +/- | + | +/- | +/- | N |
| Refuge Islands/ Medians | - Use in conjunction with marked crosswalks with ADT > 12,000 to allow peds/cyclists to cross halfway and wait
- Provides enhanced perception of safety for pedestrians and cyclists
- Should be raised for increased visibility
- Should be 6’ min for pedestrians and 6-8’ min for cyclists to provide sufficient space and separation from traffic
- Separates opposing traffic streams and minimize vehicle/vehicle and vehicle/pedestrian conflicts
- May increase traffic speeds
- Need more right-of-way and can limit access to adjacent land | $$ | + | +/- | + | + | +/- | +/- | +/- | +/- | + | +/- | +/- | + |
| Road Diet | - Allows for wider shoulder for cyclists or wider pedestrian area
- Reduces vehicular speeds and provides room for exclusive left turn lanes
- Reduces frequency and severity of collisions, and may reduce traffic volumes
- Reduces crossing width and exposure for pedestrians
- Can be used to provide on-street parking | $$ - $$ | + | + | +/- | +/- | +/- | +/- | + | + | + | + | + | +/- | N |
| Uneven Roadway/ Infrastructure | - Provide smooth transitions between asphalt and gutter, drainage structures, grate, and other infrastructure
- Drainage grates should be bicycle friendly (no parallel-running grates) | $$ - $$ | + | + | + | + | + | + | +/- | +/- | N | +/- | + | |
<table>
<thead>
<tr>
<th>TABLE 6.1: DESIGN ELEMENTS FOR ACTIVE TRANSPORTATION</th>
<th>Cost Impacts</th>
<th>User Impacts</th>
<th>Sustainability Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN ELEMENT</td>
<td>Estimated Costs</td>
<td>Pedestrians</td>
<td>Bicycles</td>
</tr>
<tr>
<td>On-Street Alternatives, Continued</td>
<td>$-$-$-$</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Shared Lane Markings or “Sharrows”</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>• When a bike lane is not practical, a potential treatment is the shared lane marking, or “sharrow”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Intended to assist bicyclists with lateral positioning in the lane, outside the door zone on streets with on-street parallel parking and away from the curb in lanes too narrow to share with a motor vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shared lane markings alert motorists to the position bicyclists are likely to occupy within the lane, encourage safe passing of cyclists by motorists and reduce incidence of wrong-way bicycling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Research also suggests that sharrows can reduce the incidence of sidewalk riding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signage: No Turn on Red</td>
<td>$</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>• Bicyclist benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Helps one crosswalk but hurts the other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signage: Right Turn/Yield to Peds Blank Out Sign</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>• Blank-out signs are a way to provide clearly visible information to minimize undesirable motorist movements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Alternative to static regulatory and warning signs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The sign displays a “Yield to Pedestrian” message to motorists in the right-turn lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signage: Share the Road</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>• A “Share The Road” plaque is mounted below a bicycle warning sign</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sign assembly advises drivers to watch for bicycle travel on the roadway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signals: Bicycle-Demand Actuated</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>• Consists of an electrified loop of wire buried in the traffic lane approaches to the intersection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Requires dedicated bike space, but allowing cyclists to trip the signal decreases unsafe movements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Special pavement markings telling bicyclists where to stop can optimize the functioning of the signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signals: Pedestrian Countdown</td>
<td>$</td>
<td>+</td>
<td>N</td>
</tr>
<tr>
<td>• Informs pedestrians of how much “crossing time” is remaining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use in combination with enhanced crosswalks and other features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Now required by MUTCD for all new installations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signals: Phasing, Progression</td>
<td>$</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>• Signals can be phased and timed to reduce vehicular delay overall or by approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Progression may help reduce delay for higher-volume areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Example - leading pedestrian intervals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signalization</td>
<td>$$</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>• Signal controlled intersections help limit direct vehicle/vehicle and vehicle/pedestrian conflicts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Assigns right-of-way at intersections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn Lanes</td>
<td>$</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>• Left turn lanes, in particular, allow through traffic to continue to move and reduce the potential for rear-end collisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use in conjunction with a road diet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• At signalized intersections, creating separate phases along with turn lanes may increase overall delay</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ = Low Cost $$ = Medium Cost $$$ = High Cost + = Positive Impact - = Negative Impact +/- = Mixed Impact N = No Impact
TABLE 6.1: DESIGN ELEMENTS FOR ACTIVE TRANSPORTATION

<table>
<thead>
<tr>
<th>DESIGN ELEMENT</th>
<th>Cost Impacts</th>
<th>User Impacts</th>
<th>Sustainability Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated Costs</td>
<td>Pedestrians</td>
<td>Bicycles</td>
</tr>
<tr>
<td>ADA-Accessible Bus Stops</td>
<td>$-$$</td>
<td>+</td>
<td>N</td>
</tr>
<tr>
<td>Benches and Resting Points</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle Parking: Bicycle Lockers</td>
<td>$</td>
<td>N</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle Parking: Bicycle Racks</td>
<td>$</td>
<td>N</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle Parking: Covered Parking</td>
<td>$-$$</td>
<td>N</td>
<td>+</td>
</tr>
<tr>
<td>Buffer Area</td>
<td>$-$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lighting: Pedestrian Scale</td>
<td>$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lighting: Street Level</td>
<td>$$</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

DETAILS & BENEFITS

Off-Street Alternatives

- **ADA-Accessible Bus Stops**
 - Provide ADA grades, transitions and surfaces at bus stop
 - Provide connection to sidewalk
 - Provide smooth, stable, and slip-resistant surface

- **Benches and Resting Points**
 - Provide locations for pedestrians to rest along walk-friendly corridors
 - Resting points should be placed at regular intervals, a maximum of 900 feet apart
 - Especially important in encouraging senior citizens to walk to their destination

- **Bicycle Parking: Bicycle Lockers**
 - Secure bicycle parking is an important complement to on-street facility improvements
 - Provides storage options at appropriate location, often determines whether a person will use bicycle or not
 - Long term parking usually suggests that the bike will be left all day, or overnight, or for an even longer duration
 - Bicycle storage lockers are generally secure from theft and other tampering

- **Bicycle Parking: Bicycle Racks**
 - Secure bicycle parking is an important complement to on-street facility improvements
 - Provides storage options at appropriate location, often determines whether a person will use bicycle or not
 - Needs to be accessible to surrounding land uses
 - More appropriate for short-term parking, usually two hours or less

- **Bicycle Parking: Covered Parking**
 - Covered bicycle shelters are another form of long-term bicycle parking, intended for periods of 4-10 hours
 - Generally located in pedestrian oriented or festival areas due to their higher cost than other forms of bicycle parking
 - Can be designed as attractive, aesthetically pleasing features of the streetscape
 - Can promote bicycling by including informational signage, messages, or route maps
 - Shelters should be outfitted with bike racks

- **Buffer Area**
 - Need a 6'-8’ minimum planting strip or tree wells in amenity zone; 8’ is the minimum for large maturing trees
 - Provides extra separation between pedestrians and cars
 - Provides a more attractive environment
 - Can serve as a windbreak, if evergreen
 - Provides shade if deciduous in summer, & reduces heat island effect
 - Can reduce motorist speed due to decreased sight distance
 - Utilities should be placed underground when possible

- **Lighting: Pedestrian Scale**
 - Identifies a "pedestrian and cyclist area" and can fill gaps between street lights
 - Provides additional lighting
 - Use in conjunction with sidewalk amenity zone

- **Lighting: Street Level**
 - Use where pedestrian scale lighting is not provided
 - Increases visibility and potential reduces conflicts for pedestrians, cyclists and motorists

$ = Low Cost $$ = Medium Cost $$$ = High Cost
+ = Positive Impact - = Negative Impact +/- = Mixed Impact N = No Impact
<table>
<thead>
<tr>
<th>DESIGN ELEMENT</th>
<th>DETAILS & BENEFITS</th>
<th>Cost Impacts</th>
<th>User Impacts</th>
<th>Sustainability Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighborhood Connectors</td>
<td>- Provides connections between different neighborhoods or different communities
- A safer (and more direct) route often encourages residents to walk or bike instead of drive</td>
<td>$-$-$ $$</td>
<td>+ + + N</td>
<td>+/ - + + + +</td>
</tr>
<tr>
<td>New or Improved Sidewalks</td>
<td>- Provides a separate space for pedestrians away from travel lanes, particularly when combined with other buffers
- 5’ wide minimum for two people to pass comfortably and ADA supported
- 6’ preferred in higher volume locations and to create more of buffer
- No utility poles, street furnishings, or other obstructions in sidewalk
- Minimize grates and other uneven surfaces</td>
<td>$$</td>
<td>+ N N N N N</td>
<td>+/ - - + +</td>
</tr>
<tr>
<td>Pedestrian and Bicycle-Oriented Parking Lots</td>
<td>- Revise municipal site plan review standards
- Applies to commercial properties; provide for bicycle accommodations between the street and the storefront
- Provides direct pedestrian paths
- Provides covered, secure bike parking
- Provides safe and comfortable access to commercial properties for bicyclists and pedestrians
- Provides seating near transit stops and corners</td>
<td>$$</td>
<td>+ + +/- + N N</td>
<td>N + +/- +/- +</td>
</tr>
<tr>
<td>Shared Access Driveways</td>
<td>- Consolidate driveways by sharing access between users
- Reduces potential conflicts between pedestrians and turning vehicles
- Use in commercial & retail blocks
- Provide incentives for driveway reductions (shared parking provisions, street trees, perennial planting programs)
- Maintain sidewalks as concrete, and separate from driveway</td>
<td>$$</td>
<td>+ + + +/- N</td>
<td>N + + + +</td>
</tr>
<tr>
<td>Shared-Use Trail</td>
<td>- Use where high pedestrian volumes are likely and bicycle lanes are not possible
- Allows for pedestrians and bicyclists to share an off-street path
- 10’ minimum
- Shared use path signage needed</td>
<td>$$</td>
<td>+ N + + + N</td>
<td>+ +/- +/- +</td>
</tr>
<tr>
<td>Sidewalk Amenity Zone</td>
<td>- Use where high pedestrian volumes are likely, and when possible, in combination with on-street parking
- Reduce monotony
- 5’ recommended (buffer area between road and sidewalk) not including sidewalk with amenities
- Amenities: street trees, street lights, benches, fountains, kiosks, transit amenities, and trash receptacles
- Minimum size: 5’ without trees or 6’ with small mature trees
- Provide benches at bus stops to make waiting for the bus more comfortable
- If necessary, locate utility poles in the amenity zone and avoid poles in the sidewalk
- Use pedestrian scale lighting where possible</td>
<td>$-$-$ $$</td>
<td>+ N + + + N</td>
<td>+ +/- +/- +</td>
</tr>
</tbody>
</table>

$ = Low Cost $ =$ Medium Cost $$ = High Cost + = Positive Impact - = Negative Impact +/- = Mixed Impact N = No Impact
<table>
<thead>
<tr>
<th>DESIGN ELEMENT</th>
<th>Cost Impacts</th>
<th>User Impacts</th>
<th>Sustainability Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-$$</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Educational Programs</td>
<td>$-$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Community Designation: Bicycle Friendly</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Community Designation: Walk Friendly</td>
<td>$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maintenance Programs</td>
<td>$-$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Program Effectiveness Measures</td>
<td>$-$$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Enforcement</td>
<td>$-$$</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Program & Policy Alternatives

- **Zoning**
 - Develop and augment zoning code and site planning language, standards, and guidance
 - Enhance accessibility and safety for bicyclists and pedestrians
 - Estimated Costs: $-
 - User Impacts: + + +/- + + N
 - Sustainability Impacts: + + + + +

- **Educational Programs**
 - Develop educational programs for pedestrians, bicyclists, and motorists
 - Design programs to cater to different age groups
 - Estimated Costs: $-$$
 - User Impacts: + + + + + + + N
 - Sustainability Impacts: N N +

- **Community Designation: Bicycle Friendly**
 - The Bicycle Friendly Community program was created by the League of American Bicyclists
 - Offers the opportunity to be recognized for achievements in supporting bicycling for transportation and recreation
 - Also serves as a benchmark to identify improvements yet to be made in the community
 - Estimated Costs: $
 - User Impacts: + + +/- + + N
 - Sustainability Impacts: + + + + +

- **Community Designation: Walk Friendly**
 - The Walk Friendly Community program was created by the Pedestrian and Bicycle Information Center
 - Offers the opportunity to be recognized for achievements in supporting walkability
 - Also serves as a benchmark to identify improvements yet to be made in the community
 - Estimated Costs: $
 - User Impacts: + + + + + N
 - Sustainability Impacts: + + + + +

- **Maintenance Programs**
 - Plow and sweep regularly
 - Engage residents and businesses to participate in clean-up days
 - Neighborhood plantings or gardens
 - Estimated Costs: $-$$
 - User Impacts: + + + + + + + N
 - Sustainability Impacts: + + + + +

- **Program Effectiveness Measures**
 - Develop measurement tools to track success of implemented recommendations
 - Possible measurements include:
 1. # of crashes, injuries, fatalities
 2. Behaviors
 3. # of citations issued
 4. # of people walking
 5. Knowledge, opinions & attitudes
 6. Changes in organizational activity
 7. Monitor traffic volumes
 8. Monitor traffic speeds
 - Estimated Costs: $-$$
 - User Impacts: + + + + + + N N N
 - Sustainability Impacts: + + + + +

- **Enforcement**
 - Increase police enforcement for pedestrian, bicyclist, and motorist actions
 - Respond to special needs (such as seniors or school areas)
 - Estimated Costs: $-$$
 - User Impacts: + + + + + + N N N
 - Sustainability Impacts: + + + + +

$ = Low Cost $ = Medium Cost $$ = High Cost += Positive Impact -= Negative Impact +/- = Mixed Impact N = No Impact
D. On-Street Alternatives

DESIGN ELEMENT 1: BICYCLE BOULEVARDS

Description: Bicycle boulevards are low-volume streets that have been optimized for bicycle travel through traffic calming and diversion, signage and pavement markings, and intersection crossing treatments. Bicycle boulevards are shared roadway facilities that are comfortable and attractive to cyclists with a wide range of abilities and ages but are less convenient as through routes for automobiles. Bicycle boulevards should be located on routes that serve major origins, destinations and travel corridors (often paralleling an arterial), and should be as direct and intuitive as possible. Residential roadways with already low vehicle volumes are often selected for bicycle boulevards.

Bicycle boulevards use a variety of traffic calming elements to achieve greater comfort and safety for bicyclists and pedestrians. For example, diverters can direct cars to main thoroughfares, while allowing bicycles and pedestrians to safely continue along the route. At some intersections, motorists may be restricted to a “right turn only”, while pedestrians and bicyclists are allowed to travel straight. Barriers may restrict cars altogether, creating a cul-de-sac feel along part of the route. Traffic circles and speed humps can help to reduce vehicle speed through intersections.

At the very least, bike route signs can be used to indicate an alternative route that avoids bottlenecks or safety hazards on a given street, such as Monroe Avenue. The signs would allow identification of the boulevards in a way that would be easily understood by bicyclists but that would not encourage motorists to use the boulevards as shortcuts even if the automobile discouragement features are not fully implemented.

Bicycle boulevards typically consist of one or more of the following conditions:

- low traffic volumes (or bike lanes where traffic volumes are medium);
- discouragement of non-local motor vehicle traffic;
- free-flow travel for bikes by assigning the right-of-way to the bicycle boulevard at intersections wherever possible;
- traffic control to help bicycles cross major arterial roads; and
- a distinctive look and/or ambiance such that cyclists become aware of the existence of the bike boulevard and motorists are alerted that the roadway is a priority route for bicyclists.

Illustrations:

Source:
http://www.bicyclinginfo.org; http://www.livablestreets.com
Images: (L, R) David Baker & Partners Architects website, (C) City of Berkeley, CA website

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
D. On-Street Alternatives

DESIGN ELEMENT 2: BICYCLE LANES/SPACE

Description: Bicycle lanes consist of a portion of the roadway that has been designated by striping, signing and pavement marking for the preferential or exclusive use by bicyclists. Striped bicycle lanes make the movements of both motorists and bicyclists more predictable. Bicycle-friendly cities such as Madison and Eugene have extensive bike lane networks. More recently, large cities such as Chicago, Philadelphia, and Seattle have begun to stripe bike lanes on their arterial and collector streets as a way of encouraging bicycle use. A number of cities, such as Washington D.C., provide two-way bike lanes between the curb and the parking lane. Some of the roads in adjacent municipalities have bike lanes, and these roadways would benefit from continuous striping. At the very minimum, edge line pavement markings with a four-foot curb offset could be provided in lieu of an identified bike lane.

In general, bicycle lanes should always be:

- one-way, carrying bicyclists in the same direction as the adjacent travel lane
- on the right side of the roadway
- located between the parking lane (if there is one) and the travel lane

Critical Dimensions - Bicycle lane width (AASHTO Guide):

- 4 feet: Minimum width of a bike lane on roadways with no curb, no gutter, and no on-street parking
- 5 feet: The recommended width for a bike lane under most circumstances (e.g. adjacent to a curb)
- 6 feet: Recommended bike lane width when adjacent to on-street parking
- 11 feet: Total width for shared bike lane and parking area, no curb face
- 12 feet: Shared bike lane and parking area with a curb face

Critical Dimensions - Bicycle lane stripe width:

- 6-inch: solid white line separating bike lane from motor vehicle lane (possibly increased to 8-inches where emphasis is needed)
- 4-inch: optional solid white line separating the bike lane from parking spaces

Illustrations:

Source: http://www.bicyclinginfo.org, Images: (L) City of Richmond, BC, Canada website, (R) www.pedbikeimages.com - Dan Burden
D. On-Street Alternatives

DESIGN ELEMENT 3: CURB EXTENSIONS

Description: Curb extensions—also known as bumpouts or neckdowns—extend the sidewalk or curb line out into the parking lane, which reduces the effective street width. Curb extensions significantly improve pedestrian crossings by reducing the pedestrian crossing distance, visually and physically narrowing the roadway, improving the ability of pedestrians and motorists to see each other, and reducing the time that pedestrians are in the street. Curb extensions have been constructed throughout the greater Rochester area.

Curb extensions placed at an intersection essentially prevent motorists from parking in or too close to a crosswalk or from blocking a curb ramp or crosswalk. Motor vehicles parked too close to corners present a threat to pedestrian safety because they block sightlines, obscure visibility of pedestrians and other vehicles, and make turning particularly difficult for emergency vehicles and trucks. Curb extensions also provide an excellent place to locate stop signs that will be more visible since they cannot be easily blocked by parked cars. The restricted street width created by curb extensions sends a visual cue to motorists to travel more slowly. Turning speeds at intersections can be reduced with curb extensions (curb radii should be as tight as is practicable).

Curb extensions must not extend into travel lanes, bicycle lanes, or shoulders (curb extensions should not extend more than 6 feet from the curb). The turning needs of larger vehicles, such as school buses, need to be considered in curb extension design.

A curb extension is designed to:

- Improve safety for pedestrians and motorists at intersections.
- Increase visibility and reduce speed of turning vehicles.
- Encourage pedestrians to cross at designated locations.
- Prevent motor vehicles from parking at corners.
- Shorten crossing distance and reduce pedestrian exposure.

Illustrations:

![Source: www.walkinginfo.org](image1)
![Source: www.walkinginfo.org](image2)

Images: www.pedbikeimages.org - Carl Sundstrom (L), Dan Burden (R)
D. On-Street Alternatives

DESIGN ELEMENT 4: HIGH VISIBILITY CROSSWALKS

Description: A crosswalk is (a) the part of the roadway at an intersection between the sidewalks on opposite sides of the highway, measured from the curbs or, in the absence of curbs, from the edges of the traversable roadway, or (b) any portion of a roadway at an intersection or elsewhere distinctly indicated for pedestrian crossing by lines or other markings on the surface. There are marked and unmarked crosswalks.

Marked crosswalks highlight the right-of-way where motorists can expect pedestrians to cross and designate a stopping location. They can also indicate optimal or preferred locations for pedestrians to cross. Marked crosswalks should be installed in conjunction with other enhancements that physically reinforce crosswalks and reduce vehicle speeds, particularly at uncontrolled locations and on major roads. Other enhancements include advance vehicle stop lines, curb extensions, and refuge (crossing) islands. An unmarked crosswalk is merely the part of a roadway that is included within the extensions of the sidewalk lines between opposite sides of the roadway at an intersection.

Although the MUTCD provides options for crosswalk markings, the continental design is recommended because research indicates that it is the most visible to drivers. The ladder design is created with white longitudinal lines at a 90-degree angle to the line of the crosswalk. The lines should be approximately 12 to 24 inches wide and spaced 12 to 24 inches apart. The continental design can also be installed so that the primary paths for vehicular tires are between the crosswalk markings, this helps to reduce wear and maintenance. Use of the continental design for crosswalk markings also improves crosswalk detection for people with low vision and cognitive impairments. It is important to note that crosswalks can also create a false sense of security for pedestrians.

Crosswalks should not be slippery, create tripping hazards, or be difficult to traverse. Tape is one of the best materials for marking crosswalks because it is highly reflective, long lasting, slip-resistant, and does not require a high level of maintenance if installed properly. Although initially more costly than paint, both inlay tape and thermoplastic are more cost-effective in the long run. Inlay tape is recommended for new and resurfaced pavement, while thermoplastic may be better on rougher pavement surfaces. Tape and thermoplastic are more visible and less slippery than paint when wet.

To maintain the continuity of the pedestrian network along main streets, the Town should also consider adding stop bars and crosswalks (high visibility or otherwise) on intersecting residential streets.

Illustrations:

Source: www.walkinginfo.org; http://www.fhwa.dot.gov/environment/sidewalk2/sidewalks208.htm
Images: (L) www.neighborhoodaccess.org, www.pedbikeimages.com - Dan Burden (C), Carl Sundstrom (R)
D. On-Street Alternatives

DESIGN ELEMENT 5: REFUGE ISLANDS

Description: A refuge island, also known as a crossing island, center island, median refuge area, pedestrian island, or median slow point, is a raised island placed in the street at an intersection or mid-block to separate crossing pedestrians from motor vehicles. Center refuge islands allow pedestrians to deal with only one direction of traffic at a time, enabling them to stop partway across the street to wait for an adequate gap in traffic before crossing the second half of the street.

Where mid-block or intersection crosswalks are installed at uncontrolled locations (i.e. where no traffic signals or stop signs exist), refuge islands should be considered as a supplement to the crosswalk. They are also appropriate at signalized crossings, though they should never be used to create a two-phased pedestrian crossing at a signalized intersection (don’t leave pedestrian stuck on a crossing island between moving lanes of traffic). If there is enough width, center crossing islands and curb extensions can be used together to create a highly improved pedestrian crossing, but care should be taken to maintain bicycle access. Detectable warnings are needed at cut-throughs.

This kind of facility has been demonstrated to significantly decrease the percentage of pedestrian crashes. The factors contributing to pedestrian safety include reduced conflicts, reduced vehicle speeds approaching the island (the approach can be designed to force a greater slowing of cars, depending on how dramatic the curvature is), greater attention called to the existence of a pedestrian crossing, opportunities for additional signs in the middle of the road, and reduced exposure time for pedestrians. Refuge islands have been successfully used throughout the region.

The FHWA recommends raised medians (or pedestrian refuge islands) be considered in curbed sections of multi-lane urban roadways, particularly where pedestrians, high traffic volumes (exceeding 12,000 average daily trips per day), and intermediate or high travel speeds occur together. Medians/refuge islands should be at least 6 feet wide, but preferably 8 feet for pedestrian comfort and safety. They should also be of adequate length to allow the anticipated number of pedestrians to stand and wait for gaps in traffic before crossing the second half of the street. Maintenance concerns, such as snow removal, can be a concern.

Illustrations:

Sources: www.livablestreets.com, www.walkinginfo.org
Images: www.pedbikeimages.org / Dan Burden
D. On-Street Alternatives

DESIGN ELEMENT 6: ROAD DIET

Description: A road diet is a treatment given to an urban roadway in which the number of lanes is reduced, and the freed space converted to parking, bike lanes, landscaping, walkways, or medians. Road diets are implemented to provide additional pavement and safety for bicyclists and pedestrians, reduce speeding, and to make room for parking. Monroe County has successfully implemented other road diets in the area, including one on Dewey Avenue in the Town of Greece. A road diet is recommended for sections of Monroe Avenue, where the Level of Service is anticipated to conform to standards set by the Monroe County DOT. An illustration of this concept can be seen (later in the report) in Figure 25. The final design may differ slightly.

Road diets are anathema to traditional traffic engineering principles because they tend to reduce roadway capacity. However, in practice, road diets can cause vehicle speeds to readjust to a more optimal speed, increasing the throughput of vehicles per lane. For this reason, road diets sometimes reduce congestion, and generally always increase safety for all users of the roadway. The need for road diets comes from the fact that multi-lane urban roads are built to handle large volumes of traffic during the morning and evening rush hours. Generally, during the other 22 hours of the day, the road is larger than necessary. This abundance of pavement encourages speeding, and places bicyclists and pedestrians at far higher risk than a typical two-lane road.

The most frequent type of conversion is from four lanes to three, with the middle lane serving as a two-way turn lane (TWTL). Alternatively, the middle “lane” can be a raised median with breaks or left turn pockets for turns. Road diets involving streets serving up to 20,000 vehicles per day can substantially improve safety without significantly reducing roadway capacity. Most road diet projects result in the same or greater traffic volumes, but at a slower speed.

Dependent on the number of turning movements, the capacity of a three-lane road can be almost equivalent to that of a four-lane road, because it operates more efficiently, and because left-turning vehicles are removed from the flow of traffic, reducing delay. Three-lane roads are inherently safer because the most prudent driver sets the speed, there is only a single lane of on-coming traffic to monitor when turning left, and the two directions are separated by the TWTL or median.

Illustrations:

3 MCDOT Level of Service Expectations for Signalized Intersections: LOS of “D” or better for the overall intersection and each approach, LOS of “E” or better for each individual movement, and v/c ratios less than 1.00 for each individual movement.

E. Off-Street Alternatives

DESIGN ELEMENT 1: ADA ACCESSIBLE BUS STOPS

Description: Both new and existing bus stops need to be ADA accessible. To be accessible, the following details need to be considered during design and construction:

- A firm, stable surface when new bus stop pads are constructed at bus stops where a lift or ramp is to be deployed
- A minimum clear length of 96” (measured from the curb or vehicle roadway edge) and a minimum clear width of 60” (measured parallel to the vehicle roadway) to the maximum extent allowed by legal or site constraints
- Connections to streets, sidewalks or pedestrian paths by an accessible route
- The slope of the pad parallel to the roadway should be the same as the roadway, and for water drainage, a maximum slope of 1:50 (2%) perpendicular to the roadway
- New or replaced bus shelters should be installed or positioned so as to permit a wheelchair or mobility aid user to enter from the public way and to reach a location, having a minimum clear floor area of 30” x 48”, entirely within the perimeter of the shelter
- Shelters should be connected by an accessible route to the boarding area
- All new bus route identification signs should be appropriate in finish and contrast, character height and proportion

Sources: http://www.adata.org/adaportal/Facility_Access/ADAAG/Special_Occupancies/ADAAG_10.html

DESIGN ELEMENT 2: BICYCLE PARKING

Description: More than 1.5 million bicycles are reported stolen every year in the United States, and fear of bicycle theft is recognized as a significant deterrent to bicycle use. The availability of safe and convenient parking is as critical to bicyclists as it is for motorists and yet it is frequently overlooked in the design and operation of shops, offices, schools, and other buildings.

Bicycle parking needs to be visible, accessible, easy to use, convenient, and plentiful. Racks need to support the whole bike (not just one wheel) and enable the user to lock the frame and wheels of the bike with a cable or U-shaped lock. Parking should preferably be covered, well lit, and in plain view without being in the way of pedestrians or motor vehicles. And if any of these criteria aren’t met, there’s a good chance cyclists won’t use what is provided and will park wherever they think their bicycle will be safe.

Bicycle parking facilities are sometimes classified into Class 1 and Class 2 facilities; Class One being lockers or racks in enclosed areas (providing protection from theft), and Class Two being stands or racks in unsupervised areas. However, most communities divide parking facilities into those that provide acceptable long-term or short-term parking. Short-term bicycle parking is usually defined as being two hours or less, such as might be necessary outside a store, or for visitors to an office building or park. Long term parking usually suggests that the bicyclist is leaving the bike all day, or overnight, or for an even longer duration.

Visibility to bicyclists is critical, and when there is bicycle parking, it should be publicized. The racks can be painted in bright colors so that pedestrians and bicyclists can see them easily. Signs can be used to direct cyclists to the
parking area. A bicycle logo can be painted on the rack or on the ground. The availability and location of bicycle parking can be publicized in marketing, advertising and informational pamphlets.

Wherever possible, bicycle parking should be covered to protect the bike from rain, snow and other elements, particularly with the weather patterns of Western New York. Covered parking areas should have at least six or seven feet of clearance, but not so high as to allow rain and snow to easily blow under the roof.

2A. BICYCLE LOCKERS

Obviously the level of security and protection from the elements needs to be greater, but the immediate convenience of the parking facility may not be as important. For secure, all-day or overnight parking, for instance, the Portland guide assumes that riders will be willing to walk a short distance (e.g. 750 feet) to or from their destination.

Long-term parking options include:

- Lockers, individual lockers for one or two bicycles
- Racks in an enclosed, lockable room
- Racks in an area that is monitored by security cameras or guards (within 100 feet)
- Racks or lockers in an area always visible to employees

Perhaps the easiest solution is the bicycle locker. Generally they are as strong as the locks on the door. They are designed to be secure for individual bikes with panniers, computers, lights, etc, left on the bike. Some bike lockers are designed to be stacked so there is twice as much parking density. Good protection from the weather is another benefit. Bike lockers tend to be used most for long-term parking in areas without a lot of continuous oversight. On the downside, if lockers have coin-operated locks, they can be a target of theft, and may attract various non-intended uses.

Illustrations:

2B. BICYCLE RACKS

Racks need to be sited and installed appropriately for them to be well used. Racks that are too close to the wall, or which don't have enough room between them, will end up sitting empty while nearby railings, trees and light poles continue to be used by bicyclists. Racks need to be clearly visible and accessible, yet shouldn't interfere with pedestrians or street furniture. Here are some considerations that have been identified by other municipalities. Racks should be:

- Installed in public space within municipal limits, usually on a wide sidewalk (ten feet wide or more) with five or more feet of clear sidewalk space remaining.
- Placed to avoid conflicts with pedestrians. They are usually installed near the curb and away from building entrances, crosswalks, fire hydrants, curb ramps, etc.
- Installed in bus stops or loading zones only if they do not interfere with boarding or loading patterns and there are no alternative sites.
- Visible to the cyclist.
- Only installed in concrete, as they cannot be securely anchored in asphalt. Racks cannot be installed on heated, vaulted, or architectural sidewalks.
- Within 50 feet of the main entrance to the building, or entrances that are used by cyclists.
- Well distributed (i.e., it is typically better to have four or five racks spread out along one city block rather than a group of four or five racks mid-block).
- Located in areas of high pedestrian activity to discourage would-be thieves.

Racks offer an opportunity for public art, but first and foremost must be functional for cyclists. Some municipalities specify that the inverted U-type bike rack is the required bicycle rack, although other racks may be proposed if they meet certain performance requirements. Every other current publication on bicycle parking follows essentially the same approach. Racks should:

- Support the frame of the bicycle and not just one wheel
- Allow the frame and one wheel to be locked to the rack when both wheels are left on the bike
- Allow the frame and both wheels to be locked to the rack if the front wheel is removed
- Allow the use of either a cable or U-shaped lock
- Be securely anchored
- Be usable by bikes with no kickstand
- Be usable by bikes with water bottle cages
- Be usable by a wide variety of sizes and types of bicycle

Illustrations:

E. Off-Street Alternatives

DESIGN ELEMENTS 3 & 4: SIDEWALKS AND BUFFER AREAS

Description: Sidewalks are pedestrian lanes that provide people with space to travel within the public right-of-way that is separated from vehicles in the roadway. They also provide places for children to walk, run, skate, ride bikes, and play. Sidewalks are associated with significant reductions in pedestrian collisions with motor vehicles. Such facilities also improve mobility for pedestrians and provide access for all types of pedestrian travel: to and from home, work, parks, schools, shopping areas, transit stops, etc. Buffer areas can be developed in association with sidewalks to provide a pleasant and inviting walking area, and make sidewalks safer.

FHWA recommends a minimum width of 5 feet for a sidewalk, which allows two people to pass comfortably or to walk side-by-side. Wider sidewalks of six feet or more should be installed near schools, at bus stops, in commercial areas, or anywhere high concentrations of pedestrians exist. Sidewalks should be continuous along both sides of a street and sidewalks should be fully accessible to all pedestrians, including those in wheelchairs. Utility poles, street furnishings or other obstructions should not be placed in the sidewalk, and uneven surfaces, such as grates, should be minimized. New or improved sidewalks are recommended in corridor zones where there is a high potential for walking but a pedestrian-oriented human scale environment is lacking.

A buffer area of six to eight feet is desirable along most corridors and should be provided to separate pedestrians from the street. Eight feet is the minimum for large mature street trees. The buffer area will vary somewhat depending on the character of the roadway corridor. In commercial districts, a sidewalk amenity zone is more appropriate. Parked cars and/or bicycle lanes can provide a functional buffer area, but neither offers the aesthetic improvements provided by vegetation. In residential areas, a landscape strip is more suitable. Careful planning of sidewalks is important in order to provide adequate safety and mobility. For example, there should be a flat sidewalk provided in areas where driveways slope to the roadway.

Illustrations:

Sources: http://www.walkinginfo.org
Images: Town of Greece Dewey Avenue Corridor Study, 2007
E. Off-Street Alternatives

DESIGN ELEMENT 5: PEDESTRIAN-SCALE LIGHTING

Description: Good quality and placement of lighting can enhance an environment as well as increase comfort and safety. Pedestrians often assume that motorists can see them at night; they are deceived by their own ability to see the oncoming headlights. Without sufficient overhead lighting, motorists may not be able to see pedestrians in time to stop.

In commercial areas with nighttime pedestrian activity, streetlights and building lights can enhance the ambiance of the area and the visibility of pedestrians by motorists. Lighting can signify a pedestrian and cyclist area and fill gaps between streetlights. It is best to place streetlights along both sides of arterial streets and to provide a consistent level of lighting along a roadway. Nighttime pedestrian crossing areas may be supplemented with brighter or additional lighting. This includes lighting pedestrian crosswalks and approaches to the crosswalks.

In commercial areas, specialty pedestrian-level lighting may be placed over the sidewalks to improve pedestrian comfort, security, and safety. Mercury vapor, incandescent, or less expensive high-pressure sodium lighting is often preferred as pedestrian-level lighting. Low-pressure sodium lights are low energy, but have a high level of color distortion. Pedestrian-scale lighting should be implemented in conjunction with the sidewalk amenity zones.

Purpose:
- Enhance safety of all roadway users, particularly pedestrians
- Enhance commercial districts
- Improve nighttime security

Considerations:
- Ensure that pedestrian walkways and crosswalks are well lit.
- Install lighting on both sides of wide streets and streets in commercial districts.
- Use uniform lighting levels.

Illustrations:

Source: http://www.walkinginfo.org
Images: http://www.pedbikeimages.org / Dan Burden
E. Off-Street Alternatives

DESIGN ELEMENT 6: SHARED ACCESS DRIVEWAYS

Description: Driveway spacing and driveway density are important considerations in managing access. When driveways are spaced too closely together or the number of driveways per block or mile becomes too large, a significant increase in traffic accident rates occurs. Traffic also tends to become congested more quickly in such situations. This is a concern on Monroe Avenue, where a high number of access drives introduce conflict and a lack of continuity for pedestrians.

A shared driveway is when two or more adjacent properties use the same driveway for ingress and/or egress. Shared driveways are very common in newer commercial areas, for instance at strip malls, regional shopping centers, and office parks. Sharing driveways is good design practice since conflict points caused by motorists entering and leaving the businesses are reduced. This will, in turn, tend to reduce traffic accidents associated with turning traffic and improve the traffic flow on the main road.

Joint and cross access are formal, legal methods of ensuring that adjacent properties can share driveways. In the case of joint access, two adjacent property owners share a driveway along their common property line. In the case of cross access, one property owner has the legal right to access and use a driveway that is on the adjacent property owner’s land. Joint and cross access can be built into private real estate titles through easements. They can also be encouraged or required in local planning or design standards or in municipal and county ordinances.

Sharing driveways is most valuable as an access management strategy when property frontages are short. For example, when the number of commercial properties along a typical 400 to 500 foot block face is more than three or four. A rule of thumb on driveway sharing in an urban or suburban area might be that properties with less than 50 to 60 feet of frontage along an arterial street should not have individual driveways. These properties would share driveways with neighboring properties. Three to four commercial driveways per block face is a desirable maximum standard for an urban or suburban arterial street. This means that when there are more than three or four parcels or commercial buildings on a block face, driveway sharing and cross access should be strongly encouraged. When the number of parcels and potential driveways along a block face is small, driveway sharing and joint and cross access are not needed.

Illustration:

Source: http://www.ctre.iastate.edu/research/access/toolkit/14.pdf
Images: http://www.ctre.iastate.edu/research/access/toolkit/14.pdf
E. Off-Street Alternatives

DESIGN ELEMENT 7: SIDEWALK AMENITY ZONE

Description: The beauty and livability of a community depends greatly on the design of its streets. The character and quality of the space between the curb and the face of a building has a lot to do with the way people walking in the community feel about it. Creating comfort for the pedestrian is an important way to generate positive economic activity on the streets.

Streetscape is composed of two elements: the clear walking area - the pedestrian zone - and the area between the curb and the sidewalk – the amenity zone. These zones are typically distinguished by a change in materials, from hard materials to greenery, though in areas of high pedestrian traffic the amenity zone may include less planting and more paving.

The purpose of the amenity zone is to ensure that the pedestrian zone will be free of obstacles. Depending on the design of the sidewalk corridor, the amenity zone may or may not be paved. On sidewalk corridors where the sidewalk is set back from the street, such as when a planting strip is provided, the amenity zone consists of the width of the unpaved area. On sidewalks that are paved from the curb to the property line, the amenity zone is not as clearly defined.

Elements that should be located in the amenity zone include: street trees, streetlights, street furniture (benches, fountains, etc), trash receptacles, kiosks, utility poles, and parking meters. The average size recommended for a sidewalk amenity zone is eight feet wide, not including the sidewalk. Sidewalk amenity zones should be used where high pedestrian volumes are likely, and when possible, in combination with on-street parking.

Illustrations:

E. Off-Street Alternatives

DESIGN ELEMENT 8: PEDESTRIAN AND BICYCLE-ORIENTED PARKING LOTS

Description:
The physical layout of a development, particularly the parking lot, can often make the difference in a person’s choice to walk between stores or to adjacent developments. Careful attention should be given to the location of buildings as well as the configuration of parking lots. Site plan review standards should be developed for commercial properties to accommodate bicycles and pedestrians between the street and the storefront. Figure 35: Pedestrian and Bicycle Oriented Parking Lot provides a diagram of good parking lot practices. Several provisions can ensure a better walking environment in commercial and office developments.

Building Setbacks. Buildings should not automatically be separated from the street by parking lots—this discourages pedestrian access and primarily serves those who arrive by automobile. A maximum setback requirement of 15 to 25 feet can help to encourage pedestrian activity. Parking, driving, and maneuvering areas should not be located between the main building entrance and the street. Parking lots should be located on the side and rear yards of the property whenever possible.

Building Orientation and Facades. Main building entrances should be oriented to face the street designated as a bus route. Entrances and paved walkways should lead directly to a bus stop. Visual interest is very important to pedestrians—long, blank walls with no openings onto the street discourage walking. Building facades should maintain continuity of design elements such as windows, entries, storefronts, rooflines, materials, pedestrian spaces and amenities, and landscaping. Parking garages on streets with bus service should have ground-floor street frontage developed for office, retail, or other pedestrian-oriented uses.

On-site Walkways. For developments with multiple buildings and/or outparcels, all building entrances on the site should be connected by walkways to encourage walking between buildings and to provide a safe means of travel for pedestrians. Sidewalks between the building edge and parking lots should allow pedestrians safe and convenient access to building entrances without having to walk within driving aisles of parking lots.

Pedestrian Access Between Adjacent Developments. To encourage walking instead of driving between uses, sidewalks should connect those uses to adjacent activity centers. Barriers such as fences or vegetation should not be placed so as to hinder access between developments.

Lighting. Pedestrian-scale lighting should be designed to light the walkway, thereby increasing pedestrian safety. Pedestrian lighting should be used in addition to lighting provided for motorists’ safety. Time-Saver Standards for Landscape Architecture includes an excellent chapter on desirable lighting levels for pedestrian facilities.

Improvements Between the Building and the Street. Design elements in the area between the building and the street are critical to successful pedestrian spaces. The streetscape should provide visual interest for the pedestrian. The area should be landscaped if project budgets allow.

Bicycle Parking. Provision of bicycle parking at destinations is crucial—without it, bicycling becomes far less convenient. Bicycle parking ordinances can help to improve the situation. Bicycle parking could be provided in the form of bicycle racks, bicycle lockers, or bicycle corrals. In warmer months, a bicycle corral is a great solution where one automobile parking space is converted into temporary bicycle parking. Please see image on the right on the following page for an example of a bicycle corral.
Parking Lot Design. Parking lots with 50 or more spaces should be divided into separate areas with walkways and landscaped areas in between that are at least 10 feet in width. Pedestrian paths should be designed with minimal direct contact with traffic. Where pedestrian paths cross the traffic stream, raised speed tables that slow cars while providing an elevated pedestrian walkway should be provided. Additional recommendations for pedestrian-oriented parking lots include:

1. Location. Keep parking on one or two sides of the shopping center, away from the side that will generate the most pedestrian access. This pedestrian access point could be an office park, outparcel shopping or restaurant, or a residential area.

2. Direct Pedestrian Paths. Provide a direct pedestrian path from parking lots and parking decks to the buildings they serve. Clearly delineate this path by striping, using different paving materials, or situating the path through the center of a series of strategically placed parking islands.

3. Use of Landscaping. Landscaping can be used to channel and organize the traffic flow in parking lots as well as to provide pedestrian refuge areas. Avoid open parking lots that allow cars to move in any direction.

Illustrations:

Images: http://www.pedbikeimages.org / Dan Burden
RECOMMENDATIONS
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

A. Overall Network Recommendations

BikeWalkBrighton recommends a comprehensive approach to enhancing active transportation in the Town. Core concepts guiding the recommendations include:

1. Improving safety through implementation of infrastructure improvements, programs and policies.
2. Providing a balanced approach that addresses the needs of pedestrian and bicyclists of all ability levels.
3. Emphasizing links and connections between existing active transportation assets to support the growth of a safe, attractive and identifiable BikeWalkBrighton network.
4. Identifying partnerships and collaborations that foster the growth of active transportation in Brighton and surrounding communities.
5. Making best use of existing infrastructure and opportunities to provide a cost-effective and sustainable Active Transportation System.

The infrastructure recommendations include intersection improvements, sidewalk additions, bicycle boulevards, new shared-use trails, and “hybrid trails” which blend different facility types into a continuous route. Concept projects take advantage of existing infrastructure and opportunities, address the need for new east-west routes, and provide connectivity to community resources. Taken together, implementation of the recommended projects will provide an expanded grid for active transportation in Brighton, and improved connectivity to the growing regional system. Input from the general public and the Task Force guided the development of the recommendations. See Figure 15.

Special consideration was given to students, who may be walking and bicycling to school facilities, as well as senior citizens, who have active transportation needs to get to community services and health care providers. Bicycle and pedestrian facilities are particularly important to both of these groups. In addition to the core concepts listed above, all of the proposed recommendations were designed with the following considerations in mind:

- Compliance with design guidance from AASHTO, MUTCD, ADAAG;
- Potential funding eligibility; and
- Support from the public.

It is important to note that additional study and operational analysis is required for each of the recommendations prior to implementation. Consultation and concurrence from facility owners is required prior to implementation. Access agreements from landowners or property acquisition are necessary prior to implementation.
Note: Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
B. Sidewalk Additions

One important task of BikeWalkBrighton was to identify gaps in the existing sidewalk network, and recommend priority sidewalk additions to help close the gaps. The long-term goal of the Town is to have sidewalks on both sides of all arterial and collector roads. It is recognized that local streets with low traffic volumes can often provide a safe pedestrian environment without a full sidewalk system. In certain locations, new sidewalk construction can also serve as off-street neighborhood connections to enhance walkability. The existing Edgemoor-Ashbourne connector is a good example.

The inventory of existing conditions mapped the current sidewalk system in Brighton, and identified existing gaps. Priority sidewalk additions address gaps that are in close proximity to community destinations, show a history of pedestrian safety issues, and improve overall connectivity of the pedestrian network. BikeWalkBrighton recommends 13.4 miles of Priority Sidewalk additions. Please see Figure 16.
RECOMMENDATIONS

Figure 16

System Map of Sidewalks - Priority Sidewalk Additions

Legend

- Rail Lines
 - Active
 - Abandoned

- Trails
- Water
- Recreation and Parkland
- Sidewalks
- Priority Sidewalk Addition
 - 13.40 Miles

Note:

Highland Avenue between Homingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.

Graphic Scale (Feet)
C. Priority Intersection Improvements

Project resources allowed for a maximum of ten intersections in the Town to be selected for detailed study. The Priority Intersections received safety assessments and recommendations for improvements. The intersections were selected based on proximity to priority locations, 10 year history of crashes involving pedestrians and bicyclists, and input from the BikeWalkBrighton Task Force, Town Staff and residents. Please refer to Figure 14 (provided earlier in the plan) for the locations of Priority Intersections.

The Priority Intersections serve as prototypes, or case studies, which highlight improvement strategies that can be applied over time to other intersections in Brighton. Please see Figure 17, sheets 1-8 for illustrations of the priority intersection improvements. Please note that currently, NYSDOT does not support use of high visibility crosswalks at signalized intersections. However, Monroe County DOT utilizes high visibility crosswalks at signalized intersections. A consistent and uniform approach to crosswalks in Brighton is recommended.

Priority Intersection improvements are recommended for the Twelve Corners, but additional enhancements were also identified as a vision that the Town of Brighton can work towards. Please see Figure 18 for an illustration of the next level of improvements that are recommended in this location. Both NYSDOT and Monroe County DOT reviewed the proposed enhancements, but were concerned about cost related to contrasting pavement. Figure 18 proposes a vision that would need to go through further review to develop a concept that was acceptable to all parties.
RECOMMENDATIONS
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

Figure 17: Sheet 1

Priority Intersection Improvements: Twelve Corners

Context
- Near Brighton Central Schools
- Employment centers
- Pedestrian generators (i.e. retail, food)
- Transit stops
- Walk Score—83: Very Walkable

Issues & Concerns
- Skewed intersections
- High volume of traffic in proximity to school
- Lack of buffer space along Elmwood Avenue (south side), Winton Road (south of Elmwood Avenue) and Monroe Avenue (both sides)
- Future intersection reconstruction projects should consider upgrading to the latest ADA guidelines for pedestrian crossings

Alternatives
1. Install all high visibility crosswalks
2. Increase buffer space / install green space
3. Install contrasting pavement color treatment around the entire triangle
4. Install RT / Yield to Pedestrian blank out signs at:
 - NB Winton / Elmwood
 - EB Elmwood / Monroe
 - WB Elmwood / Monroe
 - EB Monroe / Winton
5. Install pedestrian countdown signals at:
 - Monroe / Winton
 - Monroe / Elmwood

Denotes primary pedestrian movements
Priority Intersection Improvements: South Clinton Avenue & Elmwood Avenue

Issues & Concerns
- Skewed intersection
- Curb ramps and crossings not ADA compliant

Alternatives
1. Install textured crosswalks
2. Upgrade pedestrian crossings to latest ADA compliancy codes (i.e., separated curb ramps, separated pedestrian push button locations)
3. Advanced or staggered stop bar for improved sight lines between crossing pedestrians and right turning motorists
4. Reduce higher speed right-turns (NE & SW corners) with right turn channelized islands (further consideration)

Context
- Pedestrian generators (i.e. Walgreen's, convenience stores)
- McQuaid Jesuit High School
- Employment centers
- Transit stops
- Walk Score: 54 - Somewhat Walkable
Priority Intersection Improvements: East Avenue, Clover Street, & Penfield Road

Context
- High density apartment units; seniors
- Residential neighborhoods
- Transit stops
- Walk Score: 32 - Car Dependent

Issues & Concerns
- Skewed intersections—long crossings
- Pedestrian crossing time
- Lighting at both intersections
- Skewed intersections, higher turning speeds
- High turning traffic volumes
- High residential density mostly seniors
- Future intersection reconstruction projects should consider upgrading to the latest ADA guidelines for pedestrian crossings

Alternatives
1. Install high visibility crosswalks
2. Install pedestrian countdown signals
3. Raised island vs. painted channelized area on Clover
4. Relocate stop bar prior to crosswalk
Priority Intersection Improvements: Landing Road & Blossom Road

Context
- Residential neighborhoods
- Recreational parkland
- Transit stops
- Walk Score: 20 - Car Dependent

Issues & Concerns
- Limited crosswalks (only on south leg)
- Pedestrians are directed to crossing points without crosswalks (north side)
- No overhead lighting
- Sight line with grade changes on westbound, eastbound and southbound approaches
- Crossings are not ADA compliant

Alternatives
1. Install high visibility crosswalks on the northbound and westbound approaches
2. Install overhead lighting
3. Install ADA compliant pedestrian crossings
4. Consider an urban compact roundabout for future
Priority Intersection Improvements: Monroe Avenue & Brooklawn Drive

Context
- Near Brighton Central Schools
- Pedestrian generators (i.e. CVS, retail centers)
- Residential neighborhoods
- Transit stops
- Walk Score: 68 - Somewhat Walkable

Issues & Concerns
- Offset intersection
- Sidewalk conditions may not be conducive to all users; small landing area at curb ramps
- Buffer space along Monroe Avenue on western side is not wide enough; pedestrians are splashed by water during wet roadway conditions
- Future intersection reconstruction projects should consider upgrading to the latest ADA guidelines for pedestrian crossings

Alternatives
1. Install high visibility crosswalks on side roads
2. Install textured crosswalks across Monroe Avenue
3. Enlarge buffer space (depending on ROW)
4. Install pedestrian signals on Brooklawn Drive and Torrington Drive approaches
Priority Intersection Improvements: Westfall Road & Monroe Avenue

Issues & Concerns
- Skewed intersection
- Lack of sidewalks, marked crossings, and curb ramps
- Pedestrians not clearly directed to crossing points
- Driveway locations too close to intersection
- No pedestrian signals
- No turning restrictions
- High volume of traffic/close to on-ramp
- Crossing distance is long, but there is a channelized island

Alternatives
1. Install high visibility crosswalks
2. Install new crosswalks across Monroe Avenue and Westfall Road
3. Install all new pedestrian countdown signals
4. Advanced stop bars on all approaches
5. Install ADA compliant pedestrian crossings
6. Install smaller radius on southwest corner
7. Install pedestrian apron area on southwest corner
8. Modify right turn island to provide space for a pedestrian refuge
9. Install Yield to Pedestrian blank out signs for permissive left turns off of Monroe Avenue

Context
- Near I-590 ramps
- Residential neighborhood
- Transit stops
- Walk Score: 60 - Somewhat Walkable
Priority Intersection Improvements: Monroe Avenue & Clover Street

Context
- Retail centers
- Bike lanes; Bike Route
- Employment centers
- Transit stop
- Walk Score: 68—Somewhat Walkable

Issues & Concerns
- Skewed intersection—long pedestrian crossings
- Pedestrian crossing distance
- Future intersection reconstruction projects should consider upgrading to the latest ADA guidelines for pedestrian crossings

Alternatives
1. Install all high visibility crosswalks
2. Install raised median pedestrian refuge
3. Install pedestrian countdown signals
4. Relocate pedestrian crossing closer to approach end of right turn island
Priority Intersection Improvements: West Henrietta Road & Crittenden Road

Context
- Residential area north of intersection
- Pedestrian generators (i.e. restaurant, convenience store)
- Auto dealerships
- Transit stops
- Walk Score: 43 - Car Dependent

Issues & Concerns
- No marked crosswalks
- No curb ramps
- No sidewalks
- Possible driveway location interference with pedestrians
- Gaps for pedestrians to cross if needed
- Limited shoulder space
- High volumes of traffic

Alternatives
1. Install sidewalks
2. Install high visibility crosswalks
3. Install pedestrian countdown signals w/push button actuation / ADA compliant pedestrian crossings
Twelve Corners Pedestrian Zone Concept

Issues & Concerns
- Skewed intersections increase pedestrian crossing distance.
- High volume of traffic in proximity to schools.
- Lack of buffer space along Elmwood Avenue (south side), Winton Road (south of Elmwood Avenue) and Monroe Avenue (both sides).
- Future intersection reconstruction projects should consider upgrading to the latest ADA guidelines for pedestrian crossings.

Enhancements
1. **CONTRASTING PAVEMENT**
 - Colored and/or textured pavement to identify pedestrian zone and calm traffic.
2. **HIGH VISIBILITY CROSSWALK MARKINGS**
 - Enhanced visibility to provide safe pedestrian street crossings.
3. **INSTALLATION OF SIGNAGE WHERE APPLICABLE**
 - Right turning/yield to pedestrians' blank out signs will allow pedestrians the right of way when crossing the street. 'Left turning vehicles yield to pedestrians' signs will be used on the southbound approach of S Winton Road at Monroe Avenue.
4. **EXPANDED SHARED-USE TRAIL**
 - 10' wide shared-use trail on school grounds to accommodate pedestrians and bicyclists. Traffic separated from pathway by 8' buffer zone.
5. **REVISED PATHWAY AND EXPANDED PLAZA**
 - Revised pathway shape, width, and access throughout triangular park and gazebo. Direct connection between intersection and gazebo. Expanded plaza around gazebo to provide an enhanced pedestrian gathering space with additional seating.
6. **ADDITIONAL STREET TREES**
 - Air quality enhancements, increased shade, traffic calming and improved visual quality.
D. On-Street Bicycle Facility Improvements

Based on existing conditions and roadway geometries, each study network segment is classified into one of several recommended bicycle facility improvement categories. One of five potential outcomes has been identified for each of the analyzed roadway segments. These outcomes include the following:

1. No Recommended Improvement (existing bicycle facility);
2. Roadway Restripe Candidate (reduction of existing lane widths to create space for bike lanes);
3. Road Diet Candidate (reduction of the number of lanes to create space for bike lanes);
4. Add or Widen Paved Shoulders; and
5. Detailed Corridor Study Needed/Shared Lane Markings Candidate.

Each recommendation type is discussed in more detail within this section. Please see Figure 19 for an illustration of the recommended improvements, and Table 7.1 for more detail. The roadway network study area included all arterials and collectors in the Town of Brighton, a total of 43.6 miles.

1. Existing Bicycle Facilities

One of the primary purposes of this plan is to identify locations for new on-road bicycle facilities. Accordingly, the first step in the facility recommendation process is to identify and filter out those study network segments where a bicycle facility already exists. For the purposes of this analysis, an existing bicycle facility is constituted by any designated bike lane or paved shoulder at least four feet wide (with a strip edge line) that is not clearly intended for on-street parking. Segments meeting these criteria have been identified as having an existing bicycle facility for this plan’s purposes; the analysis of all other segments continued into the next step. 24 segments, representing approximately 28% of the network’s total mileage, currently have existing on-road bicycle facilities. In addition, most of Brighton’s local streets are likely to provide acceptable bicycling conditions as shared lanes due to low volumes and speeds.

2. Roadway Restripe Candidates

Among strategies commonly used to improve bicycling conditions, roadway restriping is frequently considered the most desirable solution. This is because of the very low (or effectively non-existent, if performed in concert with scheduled resurfacing) associated cost and the existence of excess lane width on many streets. For this reason, roadway restriping was the first option analyzed for the study network after those segments with existing bicycle facilities were filtered out of the process.

Town specifications use a minimum lane width of 10 feet. The analysis spreadsheet was programmed accordingly to determine whether the total pavement width (TPW) of each roadway segment is sufficient to leave space for four feet of bicycle facility in each direction of travel while preserving the minimum lane width for all other travel lanes, turn lanes, and on-street parking. Based on these criteria, 12 segments (approximately 18% of the study network) are roadway restriping candidates. Many of these segments already include a narrow paved shoulder on one or both sides of the road, such that the restriping would widen those shoulders to an appropriate width for bicycle travel.

3. Road Diet Candidates

While the removal of travel lanes to create bicycle facilities (i.e., a road diet) is also relatively inexpensive to implement, restriping is typically a less noticeable change to a roadway and should generally be considered first. Road diets are frequently considered when a preliminary analysis indicates that sufficient capacity exists to...
effectively accommodate motor vehicle traffic for the foreseeable future with a reduced number of lanes. Such preliminary planning-level analyses have been performed for this project to identify road diet candidates. Significantly more detailed operational analyses should be carried out for individual sections before moving forward with any of the identified projects.

Planning-level estimates of future year motor vehicle capacity are feasible through the use of generalized level of service tables, which are based upon default values using the *Highway Capacity Manual*. The Florida DOT has developed a set of generalized motor vehicle level of service tables\(^6\) that are widely utilized throughout the United States. The tables use default values for different area types for many traffic variables such as K-factor, D-factor, peak hour factor, and g/C ratio. The lookup tables produce a level of service result based on roadway class (determined through average signal spacing, which was field-collected), traffic volume, and number of lanes.

To identify road diet candidates, the number of lanes was hypothetically reduced (e.g., 4-lane to 2-lane) to determine the resulting motor vehicle level of service. The results were compared against the identified motor vehicle level of service standard of “D” to see where excess capacity exists.

Five segments of Monroe Avenue, East Avenue, and East River Road, totaling approximately six miles, are identified as road diet candidates. Collectively, the restripe candidates and road diet candidates show a significant potential for making Brighton much more accommodating for bicyclists inexpensively (and potentially quickly depending on established roadway resurfacing cycles). However, only portions of Monroe Avenue were selected as final road diet candidates.

4. Add Paved Shoulders Candidates

At this point in the process, remaining roadway segments were examined to determine the feasibility of adding or widening paved shoulders, which could be designated as bike lanes or bike space, at the edge of the existing pavement. While more expensive than roadway restriping and road diet projects, constructing paved shoulders on the outside of the existing edge of pavement is still much less expensive than projects that involve reconstruction of the roadway. However, paved shoulders can add impacts to adjacent properties. For a network segment to be considered a candidate for adding paved shoulders, it must have an open shoulder (i.e., not curb-and-gutter) cross-section. Another ten study network segments (17% of the study network mileage), some of which already have narrow paved shoulders, meet this criterion. It should be noted that some of these paved shoulder candidate segments have flat roadside profiles, while others have swales that would require more expensive re-grading and possibly piping of ditches.

5. Detailed Corridor Study Needed/Shared Lane Markings Candidate

Many study segments present minimal opportunity for improving bicycling conditions through the identified roadway retrofit strategies discussed above. Specific bicycling-related improvements to these segments (representing the remaining 34% of the study network) will require extensive and detailed operational-level investigations of the constraints and opportunities along these corridors. Options for these roads include sidepaths (shared use paths adjacent to the road), bike boulevards,\(^9\) and Shared Lane Markings, or “sharrows.”

Shared lane markings are intended to assist bicyclists with lateral positioning in the lanes, outside the door zone on streets with on-street parallel parking and away from the curb in lanes too narrow to share with a motor vehicle. Shared Lane Markings alert motorists to the position bicyclists are likely to occupy within the lane, encourage safe

\(^6\) 2009 *Quality/Level of Service Handbook*, Florida Department of Transportation.

\(^9\) A local street or series of contiguous street segments that have been modified to provide enhanced accommodation as a through street for bicyclists while discouraging through automobile travel.
passing of cyclists by motorists and reduce incidence of wrong-way bicycling. Research also suggests they reduce the incidence of sidewalk riding.

There is no research at this time indicating that Shared Lane Markings significantly positively influence bicyclists’ sense of safety and comfort (i.e., level of service). However, given the other benefits and the relatively low cost and time associated with implementation, Shared Lane Markings should be considered as an interim solution for all study network segments in the Detailed Corridor Study Needed category. It should be noted that the Manual on Uniform Traffic Control Devices recommends that Shared Lane Markings should be used on roads with a posted speed limit of 35 mph or lower, but does not prohibit their use on higher speed roads. Only three segments in this category, portions of West Henrietta Road and Winton Road10, have a posted speed limit above 35 mph; nothing suggests that Shared Lane Markings would be inappropriate in those locations.

E. Bicycle Facilities at Destinations

Bicycle theft is a significant problem, and for some, a deterrent to bicycle use. Providing safe and convenient bicycle parking at community destinations is critical to increasing bicycle usage. Bicycle parking needs to be accessible, visible, convenient and abundant. Section E of the Alternatives Toolbox provides a detailed overview of bicycle racks and bicycle lockers. The U.S. Green Building Council provides the following suggestions for the amount of bicycle parking to provide for users:

- For bicyclists using commercial or industrial buildings:
 - Provide bicycle racks or storage for 5 percent or more of building users.
 - Provide showers and changing facilities for 0.5% of full-time equivalent staff.

- For bicyclists using residential buildings:
 - Provide covered bicycle storage for 15 percent or more of building occupants.

- For bicyclists using school buildings:
 - Provide bicycle racks or storage for 5 percent or more of school staff or students above the third grade level.
 - Provide showers and changing facilities for 0.5% of full-time equivalent staff.

\textbf{BikeWalkBrighton} has identified bicycle parking at all schools in the Town as a priority. In addition to the guidelines provided above, different communities and organizations have taken varying approaches to the provision of bicycle parking:

- Ann Arbor, Michigan: Provide 5 spaces per classroom.
- Bend, Oregon: Provide 1 covered space for every 10 students.
- Madison, Wisconsin: Provide 1 space per every 4 employees, plus 1 space per 4 students.
- Safe Routes to School Rule of Thumb: A typical school should expect to provide one bike parking spot for every 10-15 students.

No matter which approach is used, the provision of bicycle parking at schools and other destinations will remove a perceived barrier to safe and convenient bicycle use.

10 The west side of Winton Road immediately south of the 590 expressway may be an ideal side path candidate, given its abundant right-of-way and infrequent side street interruptions, but may require utility coordination.
On-Street Bicycle Facility Recommendations

BICYCLE FACILITY RECOMMENDATIONS
- No Recommended Improvement (existing bicycle facility) 28% of total network mileage
- Roadway Restripe Candidate (reduction of existing lane widths to create space for bike lanes) 18% of total network mileage
- Road Diet Candidate (reduction of the number of lanes to create space for bike lanes) 3% of total network mileage
- Add or Widen Paved Shoulders 17% of total network mileage
- Detailed Corridor Study Needed/Shared Lane Markings Candidate 34% of total network mileage

Note:
Highland Avenue between Hemingway Drive and Gould Street is a City of Rochester roadway. Any improvements to be coordinated with the City of Rochester. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
<table>
<thead>
<tr>
<th>Segment ID</th>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allens Creek Rd</td>
<td>Monroe Ave</td>
<td>Clover St</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>2</td>
<td>Allens Creek Rd</td>
<td>Clover St</td>
<td>Town Line East</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>3</td>
<td>Blossom Rd</td>
<td>Town Line West</td>
<td>590 Expressway</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>4</td>
<td>Blossom Rd</td>
<td>590 Expressway</td>
<td>landing Rd</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>5</td>
<td>Blossom Rd</td>
<td>landing Rd</td>
<td>Town Line East</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>6</td>
<td>Brighton- Henrietta Town Line Rd</td>
<td>Winton Rd</td>
<td>Clinton Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>7</td>
<td>Brighton- Henrietta Town Line Rd</td>
<td>Clinton Ave</td>
<td>E Henrietta Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>8</td>
<td>Brighton- Henrietta Town Line Rd</td>
<td>E Henrietta Rd</td>
<td>W Henrietta Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>9</td>
<td>Brighton- Henrietta Town Line Rd</td>
<td>W Henrietta Rd</td>
<td>Jefferson Rd</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>10</td>
<td>Brighton- Henrietta TL Rd/ Jefferson Rd</td>
<td>John St</td>
<td>East River Rd</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>11</td>
<td>Browncroft Blvd</td>
<td>Town Line West</td>
<td>Knollbrook Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>12</td>
<td>Browncroft Blvd</td>
<td>Knollbrook Rd</td>
<td>Town Line East</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>13</td>
<td>Clinton Ave</td>
<td>Brighton- Henrietta Town Line Rd</td>
<td>Woodsmeadow Ln</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>14</td>
<td>Clinton Ave</td>
<td>Woodsmeadow Ln</td>
<td>Senator Keating Blvd</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>15</td>
<td>Clinton Ave</td>
<td>Senator Keating Blvd</td>
<td>Westfall Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>16</td>
<td>Clinton Ave</td>
<td>Westfall Rd</td>
<td>Rue de Ville</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>17</td>
<td>Clinton Ave</td>
<td>Rue de Ville</td>
<td>Elwood Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>18</td>
<td>Clinton Ave</td>
<td>Elwood Ave</td>
<td>Highland Ave</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>19</td>
<td>Clover St</td>
<td>Town Line East</td>
<td>Monroe Ave</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>20</td>
<td>Clover St</td>
<td>Monroe Ave</td>
<td>Allens Creek Rd</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>21</td>
<td>Clover St</td>
<td>Allens Creek Rd</td>
<td>Elwood Ave</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>22</td>
<td>Clover St</td>
<td>Elwood Ave</td>
<td>Highland Ave</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>23</td>
<td>Clover St</td>
<td>Highland Ave</td>
<td>East Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>24</td>
<td>Crittenden Rd</td>
<td>East River Rd</td>
<td>W Henrietta Rd</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>25</td>
<td>Crittenden Rd</td>
<td>W Henrietta Rd</td>
<td>E Henrietta Rd</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>26</td>
<td>East Ave</td>
<td>Town Line West</td>
<td>Clover St</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>27</td>
<td>East Ave</td>
<td>Clover St</td>
<td>Linden Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>28</td>
<td>East Ave</td>
<td>Linden Ave</td>
<td>Town Line East</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>29</td>
<td>East River Rd</td>
<td>Jefferson Rd</td>
<td>Riverside Dr</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>30</td>
<td>East River Rd</td>
<td>Riverside Dr</td>
<td>Crittenden Rd</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>31</td>
<td>East River Rd</td>
<td>Crittenden Rd</td>
<td>500 ft past Idle Rd.</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>32</td>
<td>East River Rd</td>
<td>Genesee Valley Park</td>
<td>Kendrick Rd</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>33</td>
<td>East River Rd</td>
<td>Kendrick Rd</td>
<td>W Henrietta Rd</td>
<td>Road Diet Candidate</td>
</tr>
<tr>
<td>34</td>
<td>Edgewood Ave</td>
<td>Town Line South</td>
<td>French Rd</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>35</td>
<td>Edgewood Ave</td>
<td>French Rd</td>
<td>Westfall Rd</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>36</td>
<td>Edgewood Ave</td>
<td>Westfall Rd</td>
<td>Monroe Ave</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>37</td>
<td>Elmwood Ave</td>
<td>Town Line West</td>
<td>Clinton Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>38</td>
<td>Elmwood Ave</td>
<td>Clinton Ave</td>
<td>Winton Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>39</td>
<td>Elmwood Ave</td>
<td>Winton Rd</td>
<td>Monroe Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>40</td>
<td>Elmwood Ave</td>
<td>Monroe Ave</td>
<td>Clover St</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>41</td>
<td>Elmwood Ave</td>
<td>Clover St</td>
<td>East Ave</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>42</td>
<td>French Rd</td>
<td>Town Line East</td>
<td>Edgewood Ave</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>Segment ID</td>
<td>ROAD NAME</td>
<td>FROM</td>
<td>TO</td>
<td>RECOMMENDED ACTION</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>----</td>
<td>-------------------</td>
</tr>
<tr>
<td>43</td>
<td>French Rd</td>
<td>Edgewood Ave</td>
<td>Winton Rd</td>
<td>Roadway Restripe Candidate</td>
</tr>
<tr>
<td>44</td>
<td>E Henrietta Rd</td>
<td>Crittenden Rd</td>
<td>Brighton-Henrietta Town Line Rd</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>45</td>
<td>E Henrietta Rd</td>
<td>Sunnyside Dr</td>
<td>East River Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>46</td>
<td>W Henrietta Rd</td>
<td>Brighton-Henrietta Town Line Rd</td>
<td>Sunnyside Dr</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>47</td>
<td>Highland Ave*</td>
<td>Clover St</td>
<td>Kimberly Dr</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>48</td>
<td>Highland Ave*</td>
<td>Winton Rd</td>
<td>Town Line North</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>49</td>
<td>Highland Ave*</td>
<td>Monroe Ave</td>
<td>Town Line North</td>
<td>Add/Widen Paved Shoulders Candidate</td>
</tr>
<tr>
<td>50</td>
<td>Highland Ave*</td>
<td>Town Line North</td>
<td>Clinton Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>51</td>
<td>Highland Ave*</td>
<td>Town Line West</td>
<td>Blossom Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>52</td>
<td>Highland Ave*</td>
<td>East Ave</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>53</td>
<td>Highland Ave*</td>
<td>490 Expressway</td>
<td>Linden Ave</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>54</td>
<td>Landing Rd</td>
<td>Penfield Rd</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>55</td>
<td>Landing Rd</td>
<td>Monroe Ave</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>56</td>
<td>Monroe Ave</td>
<td>Westfall Rd</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>57</td>
<td>Monroe Ave</td>
<td>Westfall Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Monroe Ave</td>
<td>Clover/City Limits</td>
<td>590 Expressway</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
</tr>
<tr>
<td>59</td>
<td>Monroe Ave</td>
<td>Town Line East</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>60</td>
<td>Monroe Ave</td>
<td>Costa Way</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Monroe Ave</td>
<td>Winton Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Monroe Ave</td>
<td>Westfall Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Monroe Ave</td>
<td>590 Expressway</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>64</td>
<td>Penfield Rd</td>
<td>Town Line West</td>
<td>Existing Bicycle Facility</td>
<td>Existing Bicycle Facility</td>
</tr>
<tr>
<td>65</td>
<td>Penfield Rd</td>
<td>East Ave</td>
<td>Roadway Restripe Candidate</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Westfall Rd</td>
<td>Sawgrass Dr</td>
<td>Add/Widen Paved Shoulders Candidate</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Westfall Rd</td>
<td>Clinton Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Westfall Rd</td>
<td>Lac de Ville</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Westfall Rd</td>
<td>Winton Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Westfall Rd</td>
<td>Edgewood Ave</td>
<td>Existing Bicycle Facility</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Westfall Rd</td>
<td>Monroe Ave</td>
<td>Existing Bicycle Facility</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Winton Rd</td>
<td>1000 ft. N of canal</td>
<td>Existing Bicycle Facility</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Winton Rd</td>
<td>French Rd</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Winton Rd</td>
<td>590 Expressway</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Winton Rd</td>
<td>Westfall Rd</td>
<td>Existing Bicycle Facility</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Winton Rd</td>
<td>Newton Dr</td>
<td>Existing Bicycle Facility</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Winton Rd</td>
<td>Greenwich Ln</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Winton Rd</td>
<td>Elwood Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Winton Rd</td>
<td>Monroe Ave</td>
<td>Detailed Corridor Study Needed/Shared Lane Markings Candidate</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Winton Rd</td>
<td>Town Line North</td>
<td>Roadway Restripe Candidate</td>
<td></td>
</tr>
</tbody>
</table>

* Note: Portions of Highland Avenue are located in the City of Rochester. These improvements will require intermunicipal coordination. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
RECOMMENDATIONS
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

F. Bicycle Boulevards

Description: Bicycle Boulevards are low-volume neighborhood streets that can provide reasonable alternatives to less bike-friendly high traffic corridors. BikeWalkBrighton recommends five Bicycle Boulevards for implementation, totaling 12.9 miles. Prototypic bicycle boulevards are recommended for the following locations:

- Bicycle Boulevard 1: Buckland Park to Highland Avenue (2.75 miles)
- Bicycle Boulevard 2: Erie Canalway Trail to Cobbs Hill Park (4.86 miles)
- Bicycle Boulevard 3: Brighton Library/Town Hall to Highland Avenue (2.10 miles)
- Bicycle Boulevard 4: Brighton Library/Town Hall to East Avenue Bicycle Route (1.50 miles)
- Bicycle Boulevard 5: Twelve Corners Bypass (1.70 miles)

Opportunities: Brighton has a centrally located and well-established grid of neighborhood streets that are safe and attractive for bicyclists. The BikeWalkBrighton Bicycle Boulevard concepts make good use of this existing Town infrastructure to provide enhanced connectivity between community destinations. The intention is that two of the five recommended Bicycle Boulevards be implemented as pilot projects, with additional boulevards to be phased in over time. The improvements suggested are modest and low-cost; pavement markings, wayfinding signage and mapping that can be distributed by electronic and conventional methods. Both MUTCD and AASHTO provide some guidance for the development of Bicycle Boulevards.

Challenges: The wayfinding signage and pavement marking system would need to strike a balance between MUTCD/AASHTO design guidance and streetscape aesthetics acceptable to the Town of Brighton. Concurrence from facility owners would need to be obtained prior to implementation. Low-volume neighborhood roads are preferred, and County roads with higher traffic volumes are less preferable. In some cases, however, County roads were used to make connections, but more detailed review and operational analysis should be undertaken. Bicycle Boulevard 5 is an unconventional bicycle boulevard with several short-distance jogs. The desire to provide a safe route around the Twelve Corners presented a unique challenge, which was met by an unorthodox solution.

Please see Figures 20 through 24.
BICYCLE BOULEVARDS
- Low speed streets optimized for bicycle traffic
- Shared roadway intended for through-moving bicyclists
- Accessible for cyclists of all ages and abilities
- Limited to local motorized traffic by geometric design

SIGNAGE & ROAD MARKINGS
MUTCD Wayfinding signage: D1-3c

Implementation of a Bicycle Boulevard system can be as simple as selecting routes, distributing information, and identifying Bicycle Boulevards in the community with an integrated system of signage and pavement markings. Concurrence from the facility owner to be obtained prior to implementation. Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
BICYCLE BOULEVARDS

- Low speed streets optimized for bicycle traffic
- Shared roadway intended for through-moving bicyclists
- Accessible for cyclists of all ages and abilities
- Limited to local motorized traffic by geometric design

SIGNAGE & ROAD MARKINGS

MUTCD Wayfinding signage: D1-3c

Implementation of a Bicycle Boulevard system can be as simple as selecting routes, distributing information, and identifying Bicycle Boulevards in the community with an integrated system of signage and pavement markings. Concurrence from the facility owner to be obtained prior to implementation. Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
Bicycle Boulevards are typically established on neighborhood streets with low traffic volumes that provide cyclists with safe and convenient alternatives to high-traffic corridors.

Bicycle Boulevards should connect important community destinations, and provide routes that are reasonably direct and easy to navigate.

Bicycle Boulevards are cost effective because they utilize existing infrastructure. The street network in Brighton provides numerous opportunities to establish safe and convenient Bicycle Boulevards.

Implementation of a Bicycle Boulevard system can be as simple as selecting routes, distributing information, and identifying Bicycle Boulevards in the community with an integrated system of signage and pavement markings. Concurrency from the facility owner to be obtained prior to implementation. Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
BICYCLE BOULEVARDS

- Low speed streets optimized for bicycle traffic
- Shared roadway intended for through-moving bicyclists
- Accessible for cyclists of all ages and abilities
- Limited to local motorized traffic by geometric design

SIGNAGE & ROAD MARKINGS

MUTCD Wayfinding signage: D1-3c

Implementation of a Bicycle Boulevard system can be as simple as selecting routes, distributing information, and identifying Bicycle Boulevards in the community with an integrated system of signage and pavement markings. Concurrence from the facility owner to be obtained prior to implementation. Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
RECOMMENDATIONS

BICYCLE BOULEVARDS
- Low speed streets optimized for bicycle traffic
- Shared roadway intended for through-moving bicyclists
- Accessible for cyclists of all ages and abilities
- Limited to local motorized traffic by geometric design

SIGNAGE & ROAD MARKINGS
MUTCD Wayfinding signage: D1-3c

Implementation of a Bicycle Boulevard system can be as simple as selecting routes, distributing information, and identifying Bicycle Boulevards in the community with an integrated system of signage and pavement markings. Concurrence from the facility owner to be obtained prior to implementation. Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.

Figure 24
Bicycle Boulevard 5 Concept
Twelve Corners Bicycle Bypass

Proposed Shared-Use Trail
Signalized Intersection
Mid-Block Intersection

1.7 Miles

Destinations

Hollywood Avenue
Brantford Road

Not to scale
G. Monroe Avenue Road Diet

Monroe Avenue is a heavily traveled corridor with vehicular traffic volumes and speeds that are not conducive to bicycle or pedestrian traffic. The roadway is currently striped for four travel lanes (two per direction) at 10 feet each, leaving no room for on-street bicycle traffic and resulting in a bicycle level of service “D”, which is undesirable.

The corridor was reviewed from Highland Avenue to the Twelve Corners, and from the Twelve Corners to Edgewood Avenue, to determine the feasibility of a road diet for the two areas. Upon detailed investigation and discussions with NYSDOT, it was determined that a road diet is feasible for the section from Highland Avenue to the Twelve Corners. However, at this time, a road diet is not feasible for the section from Twelve Corners to Edgewood Avenue.

Monroe Avenue will be reduced from five lanes (two travel lanes in each direction with a center two-way left turn lane) to three lanes (one 14’ travel lane in each direction with a 12’ center two-way left turn lane) between Highland Avenue and Twelve Corners. The road diet will improve safety for all road users by reducing vehicle speeds, reducing pedestrian crossing distances, adding left turn lanes, and eliminating the potential for “courtesy gap” accidents which can occur when there are two travel lanes in one direction. The narrowing of the vehicular travel lanes will also provide an opportunity to install sharrows in both directions, which indicate that motorists must share their wider travel lane with bicyclists.

The intersection of Monroe Avenue and Highland Avenue will operate at level of service “D” or better on all approaches during the PM peak hour, which is consistent with current operating conditions. All other signalized intersections along Monroe Avenue between Highland Avenue and Twelve Corners will operate at LOS “C” on the side roads and LOS “A” on Monroe Avenue. The anticipated level of service conforms to Monroe County DOT’s standards. Please see Figure 25 for an illustration of a road diet on Monroe Avenue. Please see Appendix G for more information regarding calculations for this recommended solution, and Appendix H for an alternate concept that was considered for Monroe Avenue. This alternate concept was presented and reviewed, but not accepted at this time. However, this solution might be appropriate for a different road segment at a different point in time.

11 MCDOT Level of Service Expectations for Signalized Intersections: LOS of “D” or better for the overall intersection and each approach, LOS of “E” or better for each individual movement, and v/c ratios less than 1.00 for each individual movement.
RECOMMENDATIONS

Figure 25

Monroe Avenue Road Diet Concept

Existing Conditions

Conceptual Design
H. Concept Projects

1. Brighton Farash Parcel Trail Concept

Description: The Farash Parcel is approximately 72 acres of undeveloped open space between Elmwood Avenue and Westfall Road. Property dimensions are roughly 4400’ north-south and 1000’ east-west. The Town of Brighton is currently in the final stages of acquiring the property. The Farash Parcel Trail concept proposes approximately 0.8 miles of new shared-use trail on the parcel. Please see Figure 26.

Opportunities: A shared-use trail on the Farash parcel would provide a valuable off-road connection between the Town Hall/Library complex on Elmwood Ave and Buckland Park on Westfall Road. The proposed trail would offer a wealth of healthy outdoor opportunities to neighbors. The north-south Farash Parcel Trail concept also intersects with the east-west U of R Hybrid trail concept and the Elmwood Avenue Side Path concept. The synergy between the concept projects could greatly enhance the Active Transportation network in Brighton.

Challenges: Over 40 acres of the property are indicated as wetlands on state and federal mapping. The parcel is an environmentally sensitive area. Trail alignments, materials and construction methods would need to respond to sensitive ecologies and minimize site impacts. Permitting would be required from state and federal agencies. Depending on impacts of the final design, some level of wetland mitigation may be required. Buckland Creek is a significant stream that would require a bridge crossing set above flood level. The site is surrounded by residential properties, and trail alignments must respect privacy concerns. The design indicates a minimum 150’ buffer between property lines and the new trail.

Example Shown in Photo: Meridian Centre Park Trails
Benefits

CONNECTIVITY to community resources, adjacent neighborhoods, existing parks and trail systems, public transportation, and local campuses.

CONSERVATION and enhancement of existing habitats and ecosystem services.

RECREATION health and fitness opportunities for residents and visitors.

SAFETY for all user groups.

ACTIVE TRANSPORTATION benefits that enhance economic, social, and environmental sustainability in Brighton.
2. **Brighton Auburn Trail Concept**

Description: The Brighton Auburn Trail is an abandoned railroad right of way, 0.7 mile east of Twelve Corners. The corridor runs north-south between Clover Street and Highland Avenue. Overall distance is 1.87 miles, about 50 minutes walking time, or about 10 minutes by bike. Please see Figures 27 and 28.

Opportunities: The abandoned rail corridor in Brighton is already cleared and graded, which will reduce the cost of new trail construction. The corridor is currently used by residents as an informal trail. The Auburn Trail is an established regional trail system that runs through parts of Monroe and Ontario Counties. The Brighton Auburn Trail was identified by the GTC as a near-term recommendation in the 2002 Regional Trails Initiative.

The proposed trail would provide direct connectivity to Council Rock Elementary School, the Harley School, businesses along Monroe Avenue, destinations and bike lanes in the City of Rochester, and the existing Auburn Trail south of Brighton. The project would potentially have strong synergy with the planned Green Infrastructure improvements along Monroe Avenue, and would also achieve some of the objectives set forth in the 2011 Monroe Avenue Corridor Community Vision Plan. The Brighton Auburn Trail would intersect with BikeWalkBrighton priority sidewalk additions, and with proposed Bicycle Boulevard #3.

Challenges: The property is currently owned by RG&E and provides maintenance access to overhead utility lines. Consultation and access agreements with RG&E would need to be established prior to design development. As precedent, RG&E has been receptive in the past to allowing trail construction on certain of their properties. The proposed trail alignment would include (4) non-signalized at grade road crossings. Informal assessment indicates that the establishment of acceptable road crossings appears feasible. Further analysis including gap analysis and site distance measurements would need to be conducted as part of design developments. Road crossing design and safety measures would follow guidance from 2012 AASHTO Guide for the Development of Bicycle Facilities. Preliminary concepts for at-grade crossings are indicated in Figure 29. In addition, please see Appendix J for data on the economic benefits of trails.
Benefits

CONNECTIVITY to schools, adjacent neighborhoods, Town sidewalk grid, existing parks and trail systems, and community resources. Potential connection to Erie Canalway Trail via bicycle boulevard system.

CONSERVATION and enhancement of existing habitats and ecosystem services. Opportunities for an Urban Ecology Corridor, providing a linear learning environment between two schools.

RECREATION health and fitness opportunities for residents and visitors.

SAFETY & ACCESSIBILITY for all user groups.

ACTIVE TRANSPORTATION Benefits that enhance economic, social, and environmental sustainability in Brighton.

Figure 27

Brighton Auburn Trail Concept

RECOMMENDATIONS
RECOMMENDATIONS

Figure 28

Brighton Auburn Trail Concept Graphic

Enhancements

1. **10' WIDE SHARED-USE TRAIL**
 Asphalt, compliant with ADA and AASHTO standards.

2. **RESTING POINTS**
 Located every 300 yards (approximately a 5 minute walk).

3. **BRIGHTON TRAIL BANNERS**
 Located on existing utility poles.

4. **NATIVE SHRUB MASSES**
 Provide buffer, screening, increased biodiversity, habitat enhancement, and year-round visual interest.
RECOMMENDATIONS

Figure 29

Brighton Auburn Trail Concept Details

AT-GRADE CROSSING ENHANCEMENTS

Not to scale

NOTE: ROAD CROSSINGS TO COMPLY WITH THE AMERICAN ASSOCIATION OF STATE HIGHWAY TRANSPORTATION OFFICIALS (AASHTO) GUIDE FOR DEVELOPMENT OF BICYCLE FACILITIES.
3. Buckland Park Hybrid Trail

Description: This concept recommends a Hybrid Trail system to establish an active transportation route between Buckland Park and the Canal Trail at Brighton town Park. Shared use trail would be constructed from Buckland Park to the east end of Senator Keating Boulevard. Existing sidewalk along SK Blvd would be expanded into a 10’ wide side path. South Clinton Avenue is crossed at a signalized intersection. Planned improvements on South Clinton Avenue will safely convey users a short distance to a new section of shared-use path along the south side of the Brighton Town Park pond. The new trail will link to the existing trails in Brighton Town Park and the Canal Trail. Total length of the proposed Buckland Hybrid Trail is 1.65 miles. Please see Figure 30.

Opportunities: The Buckland Park Hybrid Trail would provide connectivity between Buckland Park, Brighton Town Park and the Canal Trail. There is productive synergy with planned improvements on South Clinton Avenue and on Westfall Road. This concept would link with other recommended BikeWalkBrighton concept projects including the Farash Parcel Trail and Bicycle Boulevard #1.

Challenges: The Buckland Hybrid trail has relatively few significant challenges to implementation. Coordination would be required between Town of Brighton, MCDOT and NYSDOT. Because they are made up of different facility types, Hybrid Trails require special consideration in regards to wayfinding signage.
RECOMMENDATIONS

Figure 30

Buckland Park Hybrid Trail Concept
Erie Canalway Trail System Connection to Brighton Park & Buckland Town Park

1.65 Miles

Destinations

Key

Existing Trail System

10’ Wide Concrete Side-Path (Expanded Sidewalk on North Side of Senator Keating Boulevard, meeting ADA and AASHTO guidelines)

10’ Wide Shared-Use Trail (meeting ADA and AASHTO guidelines)

Proposed Wayfinding Signage

Existing Signalized Intersection

Existing Striped Shoulder & Sidewalk

Proposed Connection of Existing Trail to Park Access Road

Not to scale

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
4. University of Rochester Hybrid Trail

Description: A hybrid trail combines bike boulevards, sidewalk additions and new pathway construction to provide a continuous route between destinations. The U of R Hybrid Trail would provide an additional east-west route between the core of Brighton and the University of Rochester in the City. Total length of the proposed trail would be 4.5 miles. Please see Figure 31.

Opportunities: The bike boulevard portions of this project make good use of existing bike-friendly streets. The on-road segments would be connected by new shared-use trails constructed in undeveloped open space. The U of R Hybrid Trail would connect to both the Highland Crossing Trail and the proposed Farash Parcel Trail. East-west connectors suggested in the Farash Parcel Trail project would allow the U of R Hybrid Trail to extend east via bicycle boulevards to Brighton High School. Further connections could be made in the City of Rochester, and should be coordinated with the City of Rochester and the University of Rochester.

Challenges: The suggested Hybrid Trail is somewhat circuitous and would need to be supported by a strong wayfinding system. Open space connections indicated would need to be evaluated for environmental sensitivities. Implementation of this concept would require further operational analysis, consultation with land owners, and design development based on current best practices.
Figure 31

University of Rochester Hybrid Trail Concept

Note: Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.

Benefits

CONNECTIVITY
To community resources, adjacent neighborhoods, Town Hall, sidewalk grid, and the University of Rochester.

CONSERVATION
And enhancement of existing habitats and ecosystem services. Makes good use of existing bicycle-friendly infrastructure.

RECREATION
Health and fitness opportunities for residents and visitors.

SAFETY & ACCESSIBILITY
For all user groups.

ACTIVE TRANSPORTATION
Benefits that enhance economic, social, and environmental sustainability in Brighton.
5. Elmwood Avenue Side Path Concept

Description: The Elmwood Avenue Side Path concept addresses the need for better east-west active transportation routes in Brighton. Analysis indicates that conditions are challenging for the provision of on-road bicycle facilities along Elmwood Avenue. The Side Path could provide an alternative approach that would improve existing conditions for pedestrians and cyclists. AASHTO defines a Side Path as “a specific type of shared use path that runs adjacent to a roadway, where right-of-way and other physical constraints dictate.” This concept suggests using space in and adjacent to the ROW along the south side of Elmwood Avenue to provide a continuous shared use pathway between the Brighton Town Hall and the University of Rochester. Expanding the existing sidewalk to a 10’ width is proposed, along with improvements to provide a more attractive and sustainable environment for pedestrians and bicyclists. The total length of the Side Path would be 2.3 miles. Please see Figure 32.

Opportunities: The concept plan calls for doubling the existing 5’ wide concrete sidewalk to create a 10’ wide shared use pathway. The concept makes efficient use of the existing sidewalk and buffer space, connects several destinations, and would intersect with the proposed Farash Trail concept, the Highland Crossing Trail, and planned improvements along Mount Hope Avenue in the City of Rochester. With cooperation from the City of Rochester, the Side Path could connect to the Genesee Riverway Trail. The Elmwood Avenue Side Path could help transform the Elmwood Avenue corridor into a Complete Street better serving various modes of transport. See Figure 33.

Challenges: Side Paths require careful consideration of conflict points such as of road crossings and driveways. There are 32 properties along the proposed alignment in Brighton. The highest concentration of conflict points occurs in the residential blocks to the east and west of Fairfield Drive. Due to the lack of on-road facilities, bicycle use of the sidewalk along Elmwood Avenue is not uncommon. If properly designed and constructed, the proposed Elmwood Avenue Side Path could provide significant improvement over existing conditions. East of the Town Hall, there is not enough space to continue the Side Path along Elmwood, but two bicycle boulevards are proposed to begin/end at the Town Hall. Implementation of this concept would require further operational analysis, consultation with land owners, and design development based on current best practices.
BENEFITS

CONNECTIVITY between the 12 Corners, the Town Hall, the University of Rochester, and adjacent neighborhoods. Provides a much needed east-west Active Transportation Corridor north of the Canalway Trail. Links the evolving Brighton active transportation system to the implementation of the City of Rochester Bicycle Master Plan.

CONSERVATION and enhancement of existing habitats and ecosystem services. Makes good use of existing sidewalks and available space adjacent to the ROW.

RECREATION health and fitness opportunities for residents and visitors.

SAFETY & ACCESSIBILITY for all user groups. Provides an off-road side path suitable for bicyclists and pedestrians of all mobility levels.

ACTIVE TRANSPORTATION benefits that enhance economic, social, and environmental sustainability in Brighton.

PRELIMINARY SPATIAL ANALYSIS

<table>
<thead>
<tr>
<th>Affected Parcels</th>
<th>Rochester</th>
<th>Brighton</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>32</td>
<td>45</td>
</tr>
</tbody>
</table>

Note: Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
RECOMMENDATIONS

Elmwood Avenue Side Path Concept Graphics

Enhancements

1. **EXISTING SIDEWALK**
 - 5’ wide concrete pavement.

2. **EXPANDED SHARED-USE TRAIL**
 - Add 5’ of new pavement width to create 10’ wide ADA-accessible and AASHTO compliant side path. Suitable for less advanced cyclists and pedestrians of all mobility levels.

3. **CENTER STRIPE**
 - Expanded pavement width and center stripe visually distinguish side path from conventional sidewalk.

4. **BUFFER STRIP**
 - 8’ minimum width preferred.

5. **ADDITIONAL STREET TREES**
 - Air quality enhancements, increased shade, traffic calming and improved visual quality.

6. **EXISTING SIDEWALK**
 - In some locations on north side of Elmwood Avenue.

7. **RESTING AND SEATING AREAS**
 - Located every 300 yards (maximum interval) approximately a 5 minute walk. Enhances accessibility for lower mobility levels.

Typical Cross Section, Not to Scale

Note: Typical ROW width on Elmwood Avenue between Mt. Hope Avenue and East Avenue varies between 50’-100’

Prepared by eDr Companies in association with Sprinkle Consulting and SRF & Associates
6. *Rochester Multiversity Concept*

The "Rochester Multiversity" concept boasts linking the three largest schools in the Rochester area – University of Rochester (U of R), Rochester Institute of Technology (RIT) and Monroe Community College (MCC) – by bicycle connections. The schools are home to 80,000 students, most within biking distance of one another. The distance from U of R to MCC and from RIT to U of R is about 2.5 miles, and the distance from MCC to RIT is about 3 miles.

Specific proposals related to this concept include:

- Linking MCC to Brighton and U of R by turning the hiking trail which runs from MCC to the Erie Canal into a multi-use walking and biking trail going west to South Clinton Avenue and east to the East Henrietta Road bridge. The trail would need to include ramps from the Erie Canalway Trail to bike lanes to allow riders to cross and go north to the City of Rochester, or west along the Canalway to U of R and western suburbs.

- Linking U of R to RIT by improving the Lehigh Valley Trail, which connects the Erie Canalway Trail at U of R to Brighton-Henrietta Townline Road. The trail is currently somewhat rough and is poorly marked, but could be easily repaired.

Developing this concept would encourage active transportation to a large and growing portion of Rochester's population, resulting in better utilization of available funding. For example, the University of Rochester plans to spend over $150 million on 8 structured parking lots, at a cost of $20,000 per spot (RCA, 2012). By encouraging active transportation, less funding would be needed for parking infrastructure and could be used for other purposes.

Please see Figure 34 for an illustration of this concept, envisioned by Professor Jon Schull of the Rochester Institute of Technology.
RECOMMENDATIONS

Figure 34

Rochester Multiversity Concept
Campus-Community Connections

Improvements

1. **POTENTIAL CONTINUOUS TRAIL**
 Along north side of Brighton-Henrietta Townline Road, between Winton Road and the Lehigh Valley Trail (10’ wide shared-use trail preferred, 5’ wide sidewalk minimum). Provide improved access to MCC.

2. **POTENTIAL SHARED-USE TRAIL**
 Connect MCC to Erie Canalway Trail at S. Clinton Avenue.

3. **DIVERGING DIAMOND INTERCHANGE**
 At 590/Winton Road intersection. Includes enhancements for bicyclists and pedestrians.

4. **IMPROVED PEDESTRIAN AND BICYCLE CROSSING**
 Canal crossing at E. Henrietta Road.

5. **UNIVERSITY OF ROCHESTER COLLEGE TOWN**
 Includes enhancements for bicyclists and pedestrians.

6. **ACCESS 390 PROJECT**
 Includes enhancements for bicyclists and pedestrians.

7. **POSSIBLE LEHIGH VALLEY TRAIL IMPROVEMENTS**
 The North end of the trail, enhanced connection with the University of Rochester and the Genesee Riverway Trail.

8. **POSSIBLE LEHIGH VALLEY TRAIL IMPROVEMENTS**
 The South end of the trail. Enhanced connection with the Rochester Institute of Technology.

9. **POTENTIAL UPGRADES TO LEHIGH VALLEY TRAIL**
 Replace existing stone dust with new asphalt surface. Provide improved wayfinding and informational signage at all road crossings.

MCC-CANALWAY TRAIL CONNECTION CONCEPT

Note: Any improvements outside the Town of Brighton to be coordinated with the neighboring municipalities. Improvements beyond the Town boundary will not be funded by the Town of Brighton.
I. Programs and Policies to Encourage Bicycle and Pedestrian Activity

In addition to site-specific projects and improvements, the Town should also consider programs and policies that can be implemented on a Town-wide basis to improve the Active Transportation network. Programs and policies that were considered include: zoning, engineering standards, outreach, education, maintenance, program effectiveness measures, and enforcement.

1. Zoning

Significant portions of BikeWalkBrighton advance the accommodation of bicycling and walking in the transportation network’s public right-of-way. However, effective this initiative, confined to the public rights-of-way, it may not be enough to successfully encourage people to use active transportation for commuting or other utilitarian transportation. This effort will fall short of its goals unless it is coupled with private sector partnerships. These partnerships can be stimulated through changes in Brighton’s regulations, as well as private sector incentives. A quarter century of nationwide research, opinion and behavioral surveys, as well as local experience, underscores this. The private sector’s role in the encouragement of active transportation, particularly by providing end of trips facilities for commuting, is highlighted herein.

Existing Development Regulations. In the Town of Brighton’s Comprehensive Development Regulations, the following provisions are made for bicyclists and pedestrians in Chapter 217 – Planning Board:

- Section 7.2 states that “office, industrial, commercial and multifamily uses shall provide bicycle racks, and shall also provide sidewalks, marked crosswalks, and other pedestrian pathways to and within parking lots, when required to do so by the Planning Board.”
- Section 12 states that the content of a preliminary site plan should include “the location and arrangement of proposed means of access, egress, and circulation for vehicles, bicycles, and pedestrians, including sidewalks, marked crosswalks and pedestrian pathways to and within parking lots, sidewalks along street frontages, driveways, and other paved areas,” as well as “the location of proposed bicycle racks and other facilities to support bicycle access.”
- Section 15 states that “Sidewalks shall be provided along street frontages, and sidewalks, marked crosswalk and pedestrian pathways shall be provided to and within the parking lots of office, industrial, commercial and multifamily uses, when required by the Planning Board.
- Section 15 also states that “Bicycle racks shall be provided by office, industrial, commercial and multifamily uses when required by the Planning Board.”

The references in Sections 7.2 and 15 specifically state that these requirements are at the discretion of the Planning Board. This allows the Town some flexibility in their review process. Additional standards and guidelines relative to active transportation could add consistency to the development of infrastructure for pedestrians and bicyclists.

Section 12 lists a number of pedestrian and bicycle facilities that should be identified on the preliminary site plans. There are currently no specifics to guide a proposal. Among other considerations, standards and guidelines could provide guidance on quantity (e.g. number of bicycle racks with respect to building size or type), placement (e.g. location of pathways with respect to parking lots), and provision of associated amenities (e.g. benches, shade, or signage). Please see Appendix F “Peer City Review” for examples of standards from other communities.

The Town also has incentive zoning included in the current Comprehensive Development Regulations. The purpose of this type of zoning is “to offer incentives to applicants who provide amenities that assist the Town (in implementing) specific physical, cultural, and social policies in the Comprehensive Plan.”

Active transportation facilities and amenities could be listed in this section, if the Town wishes to more intentionally incentivize their construction.

12 Town of Brighton Comprehensive Development Regulations, Chapter 209, Incentive Zoning
The Town of Brighton should consider establishing clear standards and guidelines to guide future development proposals. The following sections provide additional recommendations, as well as associated private sector incentives. Several of the recommendations refer to a Technical Memorandum prepared in 2007 by the Genesee Transportation Council (GTC), *Bicycle and Pedestrian Supportive Code Language*.

Encouraging and Protecting Bicyclists and Pedestrians. Some solutions can address both bicyclists and pedestrians at the same time. The design and placement of parking lots is a critical piece of infrastructure that can be improved.

Automobile Parking to Include Pedestrian Accommodations. Parking lots can often present a safety hazard to bicyclists and pedestrians. Commercial developments often require pedestrians to negotiate a parking area between a public sidewalk and the building entrance. One solution to this concern is to design parking lots that incorporate pedestrian-friendly features. See Figure 35 for an illustration of a pedestrian and bicycle-oriented parking lot.

The GTC report notes, “Communities that wish to promote pedestrian and bicycle-sensitive parking lot design can do so by including the desired design elements within their off-street parking code language. Doing so will provide developers with examples of expected design features at an early stage in the site planning process.” Specific requirements identified by other communities (e.g. the Town of Warwick, NY) include:

1. breaking up large parking lots into smaller parking groves and parking courts with a significant number of shade trees and surrounded by low hedges, stone walls or attractive fencing;
2. encouraging designs that avoid placing more than 15 parking spaces in a continuous row and more than 60 spaces in any single parking area as defined by landscaping;
3. promoting landscaping that delineates vehicular and pedestrian patterns;
4. providing clear and legible signs, differently colored and textured paving materials, raised or inverted areas, and other techniques to direct the flow of both vehicular and pedestrian traffic within the lot; and
5. providing separate pedestrian walkways in large parking lots to allow safe movement within the lots.

Additional design criteria specify – among other things – that pedestrian and bicycle amenities, such as benches, shade, human-scale lighting, and bicycle racks should be provided.

Automobile Parking Site Location. Pedestrian and bicycle access to a site can be dramatically affected by the location of automobile parking in relation to the building. The GTC reports notes, “Communities can direct parking to the rear of development sites and thereby support pedestrian utilization of commercial facilities located within their jurisdiction.” The report suggests that the location of parking facilities on a site can be controlled directly by: 1) parking to the side or rear of the primary use included within design criteria; and 2) parking to the side or rear of the primary use and on the same lot. “Including the location criteria for the parking lot within the parking regulations allows a more unified approach to managing the facilities by including criteria related to parking lot internal design within the same section of the zoning ordinance as parking lot location criteria.”

Encouraging and Protecting Bicyclists. Facilities for bicyclists at destination are an important part of an active transportation network. The two most influential facility types cited by North Americans in nationally prominent opinion surveys as affecting their choice to bicycle for transportation are bicycle parking availability (and convenience) and, for commuting, the provision of lockers/showers at their workplace. Recommended standards and guidelines have been outlined, and the provision of incentives is also possible.

Bicycle Parking. As outlined earlier in this section, the provision of bicycle parking is currently at the discretion of the Planning Board. The Town could consider including standards and guidelines for bicycle parking. One way to
accomplish this is to allocate an identified percentage of off-street parking for bicycle parking. For example, the provision of bicycle parking is required in the City of Rochester's Zoning Code, which states that “bicycle parking shall be provided equal to 10% of the vehicle parking requirements, for a minimum of two bicycles, for all multifamily housing (over 10 units), commercial and industrial uses.” In order to encourage bicycle parking, the Town of Brighton could exempt bicycle parking facilities from the green space requirements in the code.

As noted in the GTC report, the Town should also consider including appropriate design criteria to ensure that damage to bicycles does not occur, and that bicycle parking is properly located on the site. The design specification for bicycle parking should stipulate that the parking be located in reasonable proximity to a building entrance and that the bicycle parking location be secure, covered, and at grade level. Please refer to Appendix F “Peer City Review” for examples of bicycle parking design guidelines from other communities.

In-building Bicycle Commuter Showers and Lockers. Workplace bicycle lockers, changing and/or shower facilities are not generally being constructed in this community. One way to encourage these facilities is by offering incentives that are tied to the Town’s development regulations, specifically vehicular parking off-sets. Any incentive needs to be inviting enough for developers to take notice. Another strategy is to mandate the facilities. The first option – offering effective incentives – is recommended. Several approaches to this strategy follow.

Any investment by the Town in public bicycle transportation infrastructure can be complemented by developers and commercial property owners providing on-site showers and locker facilities. There are a number of incentives that can be offered to the (private) sector developing and managing commercial properties; many of these incentives can be offered at little or no actual expense to the Town.

There are two phases in which the incentives can be effective: upon initial land development and during tenant build-out and/or remodeling or renovation. Among the compelling incentives for the construction of bicycle locker/changing/shower facilities at initial land development (or during site re-development) are:

- During traffic impact assessments, including bicycle facilities in a site plan may reduce auto trip generation and traffic impacts. (e.g., up to five percent of total trip generation, depending on land use);
- Floor area bonus (equal to the space taken up by the bicycle commuter facility) for those districts and uses that specify maximum square footage;
- Reductions to required yard/setbacks (e.g., up to 20 percent for providing shower and locker facilities with capacity of serving up to five percent of employees);
- Possible reduction of green space requirement, based on the bike parking facilities being provided, (e.g., up to twenty times the building square footage dedicated to the bicycle facility).

As the Town transforms its transportation system in the public rights-of-way, concurrent partnerships with private sector entities will ensure the effectiveness of the public initiative. The end result will be increased opportunities for Brighton residents to choose bicycling for commuting and travel. Their choice will enhance workplace productivity and employee health, which will in turn improve the economic well-being and overall quality of life in Brighton.

Encouraging and Protecting Pedestrians. An effective and interconnected sidewalk system is one of the best facilities that a municipality can offer to pedestrians. There are two key locations where sidewalks can be pursued through land use regulations: adjacent to new residential development, and adjacent to existing development.

Sidewalks Adjacent to New Residential Development. “Providing sidewalks adjacent to new development is one way that communities can improve mobility for all users including the elderly, the young, people with disabilities, and

13 or internal (transfer) flexibility of required land use buffer yards
others without access to an automobile.” The GTC report states, “Sidewalks can be provided adjacent to new residential developments utilizing a code-based approach (within the Town’s subdivision regulations) or based on a comprehensive sidewalk policy that guides the implementation of the subdivision, site planning, and zoning ordinance.” Code language linked to roadway classification and adjacent land use may support pedestrian travel between neighborhoods, but is unlikely to support improved pedestrian facilities along local streets unless local streets are included in the requirements.

The Town of Perinton is a local example of a municipality that uses a code-based approach, requiring sidewalks based on nearby land use. Sidewalks or pedestrianways must be constructed along land that fronts on both sides of a collector or arterial street within a Pedestrian Zone. The Town has an official map that identifies PED zones, which are defined as land within a 4,000 foot radius of the central point of a public school, public park, or active commercial area. This radius could be adjusted to fit the different needs of Brighton, but should be at least one-half mile.

The Town of Penfield provides an example of a community that has a policy-based approach. The Town’s comprehensive sidewalk policy requires that all new development approved by the Town must include sidewalks along both sides of all local roads. Developers may seek a waiver from the policy subject to the payment of a $500 per dwelling unit fee placed in the sidewalk capital account specifically for the installation of sidewalks in locations identified by the Town Board.

Other approaches might include requiring sidewalks based on residential density, or requiring sidewalks based on the roadway’s functional classification.

Sidewalks Adjacent to Existing Development. In most communities, gaps exist in the sidewalk network, as a result of new development that is constructed on a property that is not adjacent to existing sidewalks. The Town might consider developing specific codes and/or policies that address the process and financial details that will apply if they seek to improve the existing sidewalk system. The GTC Report notes that a policy-based approach that identifies and funds specific sidewalk improvements adjacent to existing development may be an appropriate solution.

The Town of Penfield’s sidewalk policy also applies to existing development. The policy identifies the Town’s intent to “Install sidewalks along all Minor Arterial, Major Collector, and Minor Collector roads to develop safe pedestrian mobility and enjoyment.” These roads make up the primary sidewalk system. The installation of sidewalks along the primary sidewalk system is supported by the allocation of funds from the Town’s General Fund, by grants, and by the sidewalk waiver fees paid by developers. The Town keeps a Primary Sidewalk System Map to identify improvements that will be made on an annual basis, depending on resources.

Other approaches might include constructing sidewalks at the property owner’s expense, constructing sidewalks at the Town’s expense, or constructing sidewalks following a petition from the affected property owners, with the cost being shared by all property owners in that area.

Integration Into Existing Standards. The Town of Brighton should consider adopting the aforementioned land use regulations, but may wish to integrate by way of using guidelines or standards prior to adopting new zoning. An example of development standards designed to encourage active transportation can be seen in Table 7.2.

14 GTC Report
15 Ibid
16 Ibid
17 Ibid
18 Ibid
Pedestrian and Bicycle Oriented Parking Lots

Figure 18: Pedestrian and Bicycle-Oriented Parking Lots

- Provide seating near transit stops and corners.
- Provide covered, secure bicycle parking.
- Continue sidewalks into parking lot and across driveway.
- Elevated, marked crosswalks to entrances.
- Force drivers to slowly enter parking lots by designing entrances with tight corners.

Table 5.2. Levels of Illumination for Sidewalks

<table>
<thead>
<tr>
<th>Location of Lighting</th>
<th>Lux (lx)</th>
<th>Footcandles (fc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewalks along roadsides:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Areas</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>Intermediate Areas</td>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>Residential Areas</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sidewalks distant from roadsides</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>Pedestrian Tunnels</td>
<td>40</td>
<td>4.0</td>
</tr>
</tbody>
</table>

From "Timesaver Standards for Landscape Architects"

Notes:
- Parking should be confined to one or two sides of a shopping center or restaurant, away from the sides which generate the most pedestrian access.
- Provide direct pedestrian paths from parking areas to the buildings they serve, clearly delineating the path with paving or a raised bed.
- Adequate bicycle parking must be included – bicycling is inconvenient without it.

Adapted from FHWA Publication No. FHWA-HRT-05-133

Graphic Scale (Feet)
Table 7.2: Development Standards for Active Transportation

As development proposals are evaluated by the Town of Brighton, the following checklist can be used to assess the proposal’s impact on active transportation. Walking and bicycling have a myriad of economic, health, environmental, and social benefits, both for individuals and the broader community.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Do the buildings and plantings form an attractive edge to the roadway?</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Are distances between buildings/building clusters minimized to connect uses?</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Is an interesting façade or window scheme used to create a pleasant pedestrian experience?</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Are buildings facing the street and located appropriately within the setback?</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Do the main entrance doors face the main street?</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Are new buildings scaled down into smaller, human-scaled environments?</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Are the buildings clustered, with internal open spaces, rather than arranged as single buildings separated by vast expanses of parking lots?</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Do the ground-floor windows permit pedestrian views?</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>For buildings built to the sidewalk edge, is the entrance recessed, allowing the door to swing out without obstructing the sidewalk?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Calming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Are there clear vehicular movement patterns?</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Are bump outs and pedestrian crossing signal lights used at key intersections?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linkage and Curb Cuts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Are adjacent commercial areas planning to share parking areas and curb cuts?</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Have curb cuts been avoided that would be too numerous or too close together?</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Is back street access available as an alternative for vehicular traffic?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian and Non-motorized Traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Are sidewalk areas scaled to pedestrians through carefully placed buildings and plantings?</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Are sidewalks built to current standards for increased safety and accessibility for pedestrians, including the physically challenged?</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Are sidewalks expanded near buildings to highlight the entry, link streets and parking lots, and provide safe and obvious pedestrian ways?</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Are crosswalks highlighted by use of materials or prominent stripes?</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Has non-motorized access been considered for commercial projects?</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Have connections been created between a) existing and proposed trails and sidewalks, and b) residential neighborhoods and neighborhood services?</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Have resting points for pedestrians been provided at reasonable intervals?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Are parking lots friendly to pedestrians? Are parking lanes oriented to building entrances and planting islands used to break up large parking areas?</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Is parking located behind buildings, or along the side of the building?</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Is the parking lot designed for average parking demand, not peak demand? Is the parking area as small as possible?</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Do parking bays and driveways meet minimum and maximum widths to ensure safety and flow while avoiding excessive pavement?</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Has the potential for shared or community parking been explored?</td>
<td></td>
</tr>
</tbody>
</table>
Recommendations

Internal Circulation
- **27.** Is internal circulation logically configured to serve the buildings?
- **28.** Do the drive lanes provide pedestrian and vehicular connections to the public realm along existing frontage streets?
- **29.** Do the main streets within a commercial project include pedestrian amenities such as curbing, trees, sidewalks, and lighting?

Transit
- **30.** Have transit options been identified to reduce the number of automobile trips?
- **31.** Have Park-and-Ride lots, bus shelters, or other commuter services been planned into the construction and rebuilding of larger commercial areas?

Landscaping and Street Trees
- **32.** Will landscaping be included in parking areas?
- **33.** Will planting islands be provided at a minimum of every 15 parking spaces?
- **34.** Will the landscaping provide visual relief, shade, and a buffer between uses?
- **35.** Are large areas of asphalt broken up by landscaping or other techniques?
- **36.** Is a planting strip planned for the space between the walkway and the street?
- **37.** Will street trees be planted in the space between the walkway and the street?

Open Space and Amenities
- **38.** Will active and attractive pedestrian-oriented open spaces be created?
- **39.** Are plazas, outdoor dining areas, fountains, sculpture or other amenities provided to create an attractive, “human-scale” sense of place for users in commercial projects?
- **40.** Does the proposed development take advantage of opportunities to link new and existing open spaces?

Lighting
- **41.** Are pedestrian-level light fixtures less than fifteen feet in height?
- **42.** Does the pedestrian-level lighting consist of freestanding fixtures located along the sidewalks?
- **43.** Are smaller light poles used in higher quantities to reduce intensity levels of individual fixtures?
2. Engineering Standards

The Town of Brighton Minimum Specifications for Dedication has been reviewed with regard to pedestrian and bicycle facilities. The focus of the review of the Specifications is for comparison with AASHTO Bicycle19 and Pedestrian Guides20 to identify any differences or recommended additions.

Overview of Current Guidance and Specifications. The Town of Brighton Minimum Specifications for Dedication includes the following information with respect to bicycle and pedestrian facilities:

- Requirement for 5-ft sidewalks to be installed in conjunction with all new street improvements.
- Requirements to comply with the Americans with Disabilities Act.
- Construction specifications for sidewalk materials and placement.
- Consideration of tree roots near sidewalk construction.
- Requirements for detectable warning surfaces.
- Construction specifications for warning surface materials and placement.
- Standard sheets showing sidewalk placement.
- Standard sheets for construction of sidewalks.
- Standard sheets for curb ramps.
- Standard sheet for driveways crossing sidewalks.
- Standard sheets for an asphalt park trail.
- Standard sheets for detectable warnings.

Comments on Pedestrian Facilities Guidance. The Town of Brighton Minimum Specifications for Dedication provides significant guidance for the provision, design, and construction of sidewalks. It requires concrete sidewalks with a minimum width of 5 feet be installed in conjunction with all new street improvement unless otherwise approved by the Commissioner of Public Works. The 5-foot minimum width is consistent21 with the AASHTO Pedestrian Guide with respect to basic sidewalk width. AASHTO desirable width is 5 feet. Buffers provided between the curb and sidewalk on Standard Sheets H1.1, H1.2, and H1.3 are consistent with AASHTO recommendations. On sheets H2.1, H2.2, H2.3, and H2.4 the buffer width is not specified, but can be calculated from the drawings as 9.5 ft, 9.5 ft, 5.5 ft, and 12 ft, respectively. Again, these are consistent with AASHTO.

21 In this review consistent is defined as meeting or exceeding recommendations of AASHTO.
Specific observations include the following:

Note that some of the following comments with respect to pedestrian facilities reflect criteria from the ADA Draft Public Rights of Way Accessibility Guidelines (PROWAG) and are made in light of an FHWA guidance memorandum (2006) which states:

The Draft Guidelines are not standards until adopted by the U.S. Department of Justice and the U.S. Department of Transportation. The present standards to be followed are the ADA Accessibility Guidelines (ADAAG) standards. However, the Draft Guidelines are the currently recommended best practices, and can be considered the state of the practice that could be followed for areas not fully addressed by the present ADAAG standards. (emphasis added)

Page 20, PART 20 STREET LIGHTING – Consider adding a sentence stating “Sidewalk areas shall be lit to the same illumination levels as the adjacent roadway.” Roadway lighting often fails to consider the sidewalk area. This can result insufficient lighting for the sidewalk areas. Insufficient lighting or shadowed areas can hide pedestrians from motorists who may be turning into driveways. Alternatively, pedestrians making street crossings may not be visible until they step into the roadway.

Standard Sheets H1.1, H1.2, H1.3, H2.1, H2.2, H2.3, H2.4, H5.1, H5.1.1, H5.1.2 – The ¼” per foot cross slope shown on the sidewalk, while consistent with the ADA Accessibility Guidelines, is slightly greater than the 2% cross slope specified as a maximum in the draft PROWAG.

Standard Sheet H5.2.1 – In some environments where there is significant longitudinal grade, a maximum slope of 1:12 may be difficult or impossible to achieve. The draft PROWAG states, “The running slope shall be 5 percent minimum and 8.3 percent maximum but shall not require the ramp length to exceed 4.5 m (15.0 ft)” (R303.2.1.1 Running Slope). A GENERAL NOTE could be added to this page to provide for the 15’ maximum required ramp length.

Standard Sheet H5.2.1 – The roadway cross sections do not provide for a sidewalk at the back of curb. Consequently, consider labeling the PARALLEL SIDEWALK RAMP TIGHT TO CURB drawing for conditions where the other drawings are infeasible.

Standard Sheet H5.2.2 – The PARALLEL CURB RAMP and the COMBINED PARALLEL/ PERPENDICULAR CURB RAMP should address how the back of sidewalk profile is matched to the existing grade. Provide smooth transition grade no greater than 1 to 4 maximum slope.

Standard Sheet H5.3 – Consider specifying a 2% max cross slope in the SECTION A-A drawing, or match the grade of existing walkways.

Standard Sheet H5.5.2 – This sheet is for Detectable Warning Details. However, some additional information regarding cut through islands should be provided; if not on this sheet then on another. For the DETECTABLE WARNINGS AT MEDIAN ISLANDS and DETECTABLE WARNING(S) AT ISLANDS, specify a minimum 5-ft x 5-ft passing area at the top of the ramps to be consistent with PROWAG. Additionally the minimum width for a pedestrian refuge is 6 feet. Consequently, if the NON-ELEVATED CROSSING is not 6 feet wide, detectable warnings shall not be installed.

Comments on Bicycle Facility Guidance. There is minimal design guidance for bicycle facilities in the *Town of Brighton Minimum Specifications for Dedication*. There is no text suggesting that bicycles must be considered in the design of Brighton’s roadways. It is recommended that at a minimum this document be revised to include a statement similar to AASHTO’s *Bike Guide*.
All highways, except those where cyclists are legally prohibited, should be designed and constructed under the assumption that they will be used by cyclists. Therefore, bicycles should be considered in all phases of transportation planning, new roadway design, roadway reconstruction, and capacity improvement and transit projects.

Beyond this guidance, the Town of Brighton Minimum Specifications for Dedication could state that all bicycle facilities (on-street and shared uses paths) must be designed in accordance with the current AASHTO Guide for the Development of Bicycle Facilities and the most recent edition of the Manual on Uniform Traffic Control Devices (MUTCD). The MUTCD reference could be applied to all traffic control devices placed on roadways due to become part of the infrastructure system. This is the minimum level of guidance we would recommend be included in this document.

The level of additional guidance that should be provided in the Town of Brighton Minimum Specifications for Dedication is dependent upon what types of facilities the town envisions being provided for bicyclists. If the facility of choice is bike lanes, then any guidance beyond what is in AASHTO should be discussed. This guidance should include the type of streets upon which bicycle facilities are to be provided, and the half-street cross sections should be updated accordingly. Additionally, it could include increased bike lane widths, preferred methods of marking bike lanes, whether or not signs are required, options for buffered bike lanes and striping templates for intersections. Alternative treatments (e.g., SHARED LANE MARKINGS and BIKES MAY USE FULL LANE signs) could be required for lower volume/speed streets.

Although addressed in AASHTO, specific shared use path criteria could also be included in this document. These might specify minimum shoulder widths, vertical clearance, spacing to drop-off hazards, turn radii, or the provision of amenities. Additional guidance could address mid-block crossings.

Specific bicycle-related observations on the existing Town of Brighton Minimum Specifications for Dedication include the following:

Standard Sheet H5.4 – Consider specifying a 2% max cross slope.

Standard Sheet H6.2 – Consider adding a note that if inlets are to be placed in a travel lane, bicycle-safe grates shall be used.
3. Outreach & Education
The outreach and education recommendations included in this section aim to increase the number of Brighton pedestrians and bicyclists, while encouraging safe and appropriate behavior by pedestrians, bicyclists and motorists. The active transportation network will attract pedestrians and bicyclists of different skill levels and as, well as provide opportunities for interaction with motorists and each other. BikeWalkBrighton education and outreach programs must consider all of these different user groups.

When developing different programs, campaigns or information elements, it is important to make sure each group is addressed in multiple and suitable ways. For example, programs for young bicyclists should use age-appropriate curriculum and language to explain concepts and issues.

Educational programs should address the following objectives:

1. improving safety for bicyclists, pedestrians and motorists;
2. promoting awareness and usage of the bicycle and pedestrian network and amenities;
3. increasing community partnerships in providing resources for bicyclists and pedestrians; and
4. measuring and communicating user benefits and community impact.

Educational programs should be specific, measurable, and address identified problems.

One of the key things to keep in mind when planning outreach and education efforts is not to “reinvent the wheel”. Many successful programs, campaigns and resources are available. Locally, there are already many efforts underway. Other communities throughout the U.S. and Canada have already developed tools that can be adapted and modified for the Town of Brighton. This adaptation is important in order to effectively localize the educational campaigns. Locally created campaigns that include materials with a local feel have been shown to have a more noticeable influence on motorist, pedestrian, and bicyclist behaviors than generic FHWA-produced materials. The framework for the education and outreach strategy was crafted with all of this in mind.
Recommendation 1: Connect partners to maximize the effectiveness of existing resources, programs, & materials. A list of potential partners has been developed, and their existing programs and partnerships have been inventoried to identify opportunities for new partnerships and enhanced use of resources. Some of these partners are already working together, but there are new partnerships that can be nurtured and developed, and new ways for existing educational materials to be used. Not all of the potential partners are specifically focused on active transportation-related issues, but may still be a useful partner for their ability to communicate with a certain part of the Brighton population. See Table 7.3 for a summary of the current outreach and education programs.

Examples:

a. Coordinate different organizations that offer bicycle rodeos for young bicyclists to see what ways they can support each other and maximize existing resources. Organizations include Injury Free Coalition for Kids, and Monroe County Office of Traffic Safety.

b. Utilize existing organizations, such as the Rochester Cycling Alliance, to locate volunteers for bicycle rodeos and bicycle repair programs, and to distribute information about bicycling to young adults in Brighton.

c. The Strong (formerly the Strong National Museum of Play) has an enormous audience of children and their families, and could partner with other interested organizations to help promote safe active transportation.

Recommendation 2: Identify an organization that can act as a “clearinghouse” for all the existing active transportation-related programs and resources, and provide support for whoever is willing to take on this role. Despite the fact that many programs and resources already exist locally, there is no central person or organization who is keeping track of all these efforts. One of the least expensive ways to improve the effectiveness of any existing or proposed education and outreach effort is through partnerships and connections. If one organization were to act as a clearinghouse, they could help different groups to build partnerships, catalog the campaigns and materials that are available for use, and enhance communication and coordination.

Recommendation 3: Develop new - or identify existing - educational materials that address key issues. Whether there is an existing resource available, or a new resource is needed, some of the key issues that should be addressed in future education and outreach efforts include:

a. Bicycle and pedestrian safety. Bicycle safety should specifically focus on lights, helmets, and winter cycling.
 - A bicycle light education and enforcement campaign, including giveaways. (The Boulder Bike Light campaign is an example.)
 - A helmet use encouragement campaign.
 - With the Rochester area’s long season of inclement weather, a winter cycling safety campaign would be appropriate. This campaign could involve skills workshops.

b. Rules of the Road – for bicyclists, pedestrians, and motorists
 - A “Dangers of Riding Against Traffic” campaign.

c. Encourage walking and bicycling for short trip transportation

d. Environmental, health, economic and social benefits of active transportation.
Recommendation 4: Learn from successful outreach and education examples in other active transportation-friendly communities. As indicated previously in this section, many successful programs, campaigns and resources are already available. Other communities throughout the U.S. and Canada have already developed tools that can be adapted and modified for the Town of Brighton. Of particular note are those campaigns and strategies identified in the Peer City Review.

Prioritize Examples:

a. May is National Bike Month - Recognizes those who commute by bike and encourages people to become new bicycle commuters or increase their trips by bike during the season when spring has sprung and new beginnings abound. This program features a month long calendar of events that offers organized rides for different ages and abilities, bike handling skills and maintenance workshops, and a Bike to Work Day Commuter Challenge. The program is most successful when led by a community-based organization with financial support from the Town and greater business community.

b. Bicycle Ambassadors - A team of at least two ambassadors encourages an increase in bicycling by engaging the general public to answer questions about bicycling and teach bicycle skills and rules of the road. Ambassadors attend community-based events throughout peak cycling season to offer helmet fits, route planning, bike rodeos and commuting 101 workshops. Community members also may request an appearance by a team of ambassadors at businesses, schools or a conflict zone location along the bikeway system.

c. Bike Light Campaign - With shorter days when it gets dark before commuters head home from the office, fall is a good time of year to remind cyclists that proper equipment is required when riding at night. A bike light campaign also offers the opportunity to introduce cyclists to bicycle shops and strengthen partnerships between the City and retailers. This program could offer discounts on bicycle headlights and rear red reflectors and lights. It is recommended that the campaign be rolled out in September with the return of university as well as K-12 students to school. The campaign should expire before peak holiday season when bike shops are busy and less interested in offering discounts.

d. League of American Bicyclists Bicycle Friendly Community status - The Bicycle Friendly Community (BFC) program created by the League of American Bicyclists (LAB) offers the opportunity to be recognized for achievements in supporting bicycling for transportation and recreation. It also serves as a benchmark to identify improvements yet to be made.

e. League Certified Instructor training course scholarships - The League of American Bicyclists offers certification courses to train those interested in teaching others to ride their bike safely and legally as a form of transportation. League Certified Instructors (LCIs) are a valuable asset to the community and can offer a variety of workshops for adults lacking confidence to ride in traffic as well as children learning to ride for the first time. LCI training courses require a two and a half day commitment and are offered through the LAB. To facilitate a cadre of cyclists to become LCIs, this program coordinates with the LAB to schedule training course offerings in the community and provide scholarships.
f. Expand the Safe Routes to School (SRTS) program – SRTS is a national program that addresses barriers that inhibit students from walking and biking to school. The Genesee Transportation Council recently administered a regional study of the Safe Routes to School program. The Town should work with the different schools operating in Brighton to consider how the program could be used to assess barriers at all local schools. Increasing the number of children that can safely walk and bicycle to school as well as protecting the safety of those that already do so requires a holistic approach. SRTS programs need to be cooperative efforts involving both the Town and the various schools or districts.

g. Ensure that all parts of the Town of Brighton have equal access to active transportation facilities.

h. Conduct public safety announcements on following the rules of the road. For motorists, this campaign could address the need to look left prior to turning right, and provide clear passing space. For bicyclists, this campaign could address bicycle lights and lack of visibility when not riding in the road. For pedestrians, this campaign could address crossing at designated crossing facilities, and walking on the sidewalk in all seasons.

i. Targeted enforcement initiatives – Focus on targeted enforcement initiatives that result in everyone following the rules of the road.

j. Mass distribution of a bike map – The Genesee Transportation Council has already created a regional bike map, but formatting and printing changes might allow for a bike map that could be more widely distributed. The map includes not only bicycle suitability ratings but extensive safety information for bicyclists, a listing of area bicycle shops and repair services, location of bicycle lockers and how to obtain access to them, information about how to use the bike racks that are provided on all RTS buses, and a listing of multi-use trails in the region. The map is free and can be provided upon request. If the Town published a map including only its corporate boundary, it could probably be produced in a smaller format than the GTC map, which covers a much larger area. An excellent example is the map and info guide produced by the City of Vancouver, British Columbia that illustrates bicycle routes in the city, and utilizes a compact, folded-into-wallet-size (Z-card) format.

k. Institute a “Sunday Parkways” ride once per month - In Madison, WI, Sunday Parkways are times set aside on weekends and holidays for traffic-free biking and walking on a network of selected streets.

l. Create an active transportation wayfinding program that includes identification of routes and signing plans (destination, distance, direction) as well as assessments of potential improvements along the proposed routes.

m. Adapt Oregon program “Bike Wheels to Steering Wheels.” The program helps youth better understand the relationship between bicycle safety and motion, and ultimately gives students a better understanding of safety when traveling by all modes, including walking, biking, and driving. The concepts are learned through normal math or science curriculum in schools.

Other Possible Examples:

a. Commuter of the Year Contest - This contest recognizes those who choose to bike, walk, or ride transit. An aim is to encourage others to reduce their drive alone motor vehicle trips. Nominated by their peers, contestants may be employees, residents, or students in the community and could be asked to provide an inspirational story about their transportation choice and habits. Based on nominations, categories could recognize Youth, Student, Senior, and Family Commuters. Winners also should be encouraged to serve as role models and participate in events throughout the year to mentor others and help them set goals to reduce their drive alone trips.

b. Business Pool Bike Program - Offering employees the opportunity to check out and ride a bike to meetings, lunch or run errands is a great benefit. Pool bikes are a form of bike sharing where an employer manages a fleet
of bikes for this purpose. This program offers subsidies for the purchase and on-going maintenance of bikes as part of an agreement to track use and achieve the goal of reducing vehicle miles traveled and greenhouse gases. Employees sign up, make reservations and log their trips using a web-based management tool.

c. Conduct pedestrian and bicycle counts on a seasonal basis to track whether there is an increase in pedestrian and bicycle activity, exploring new methods as suggested by the public and the League of American Bicyclists.

d. Bicycle Rodeo Kits - Children learning to ride should be confident with their bike-handling skills before riding in traffic. A Bike Rodeo is an interactive and controlled environment where cyclists practice a new skill at a series of stations. The number and difficulty of skills can be tailored based on attendance and number of instructors available to staff the event. This initiative will create a self-service bicycle rodeo kit that can be reserved by League Cycling Instructors (LCIs), Bike Ambassadors and community members. It contains instructions, diagrams and props necessary to host a bike rodeo.

e. Participate in an annual meeting of all bicycle/pedestrian planners and engineers in Monroe County. An annual meeting should be held to allow local communities and organizations to communicate their plans and programs, as well as share best practice information. Note: Town officials may not want to facilitate such a meeting, but it would be useful to participate if some other entity were to organize the event.

f. Identify proper enhanced visibility clothing for bicyclists and pedestrians, and advise the local active transportation community of the associated safety benefits.

g. As part of a larger roadway safety campaign, develop an educational campaign to eliminate bicycle and pedestrian fatalities. In Minnesota, “Toward Zero Deaths” is a statewide partnership involving federal, state, county and academic partners. The mission is to create a culture in which traffic fatalities and serious injuries are no longer acceptable through the integrated application of education, engineering, enforcement, and emergency medical and trauma services.

4. Maintenance
The availability of bicycle and pedestrian facilities is one of the components that can lead to increased riding and walking in a community. However, facility improvements do not end at construction; facilities also need to be maintained to be useful. Maintenance needs require planning and budgeting. Sample maintenance activities include keeping roadways and bike lanes clean and free of debris, identifying and correcting roadway surface hazards, keeping signs and pavement markings in good condition, maintaining adequate sight distance, and keeping shared-use trails in good condition. Maintenance is an area where planning and attention can provide significant benefits for bicyclists and pedestrians at relatively modest additional cost.

Identification of maintenance needs for active transportation facilities, and institutionalization of good maintenance practices are key elements in providing safe facilities for bicyclists and pedestrians. Winter snow removal and year-round debris removal will be key maintenance concerns in the Town of Brighton. The importance of good planning and initial design cannot be overstated with respect to long-term maintenance needs. It is easier to obtain outside funding for facilities construction than for on-going maintenance, so planning and building correctly at the outset will reduce future maintenance problems and expense. Residents and businesses can be engaged in clean-up days, or helping with snow removal.
TABLE 7.3: EXISTING ACTIVE TRANSPORTATION EDUCATION AND OUTREACH PROGRAMS AND PARTNERSHIPS

<table>
<thead>
<tr>
<th>PARTNER NAME</th>
<th>EXISTING PROGRAMS</th>
<th>EXISTING PARTNERSHIPS</th>
<th>HIGHLIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys & Girls Clubs of Rochester, NY</td>
<td></td>
<td></td>
<td>Cyclepedia - connects bicycling to online documentation.</td>
</tr>
<tr>
<td>Brighton Central School District</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brighton Police Department</td>
<td></td>
<td></td>
<td>Hands out free bike helmets for children; School Crossing Guards</td>
</tr>
<tr>
<td>Finger Lakes Health Association</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genesee Land Trust</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genesee Regional Off-Road Cyclists (GROC)</td>
<td></td>
<td></td>
<td>Singletrack Academy to teach bicycle handling skills.</td>
</tr>
<tr>
<td>Genesee Transportation Council</td>
<td></td>
<td></td>
<td>Funds studies addressing key issues. Helmet brochure, bike map.</td>
</tr>
<tr>
<td>Greater Rochester Health Foundation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visit Rochester</td>
<td></td>
<td></td>
<td>Distributes information to visitors.</td>
</tr>
<tr>
<td>Injury Free Coalition for Kids</td>
<td></td>
<td></td>
<td>Kohl's Pedal Patrol provides bike rodeos and helmets.</td>
</tr>
<tr>
<td>Monroe Community College (MCC)</td>
<td></td>
<td></td>
<td>Curb Your Car program; LEED Projects/Bike Facilities.</td>
</tr>
<tr>
<td>Monroe County Health Department</td>
<td></td>
<td></td>
<td>Partnered w/ University of Rochester Center for Community Health</td>
</tr>
<tr>
<td>Monroe County/Rochester Public Libraries</td>
<td></td>
<td></td>
<td>Venue for education/outreach programs and distribution of materials</td>
</tr>
<tr>
<td>Monroe County Office of Traffic Safety</td>
<td></td>
<td></td>
<td>Programs are free and available to any school in Monroe County.</td>
</tr>
<tr>
<td>Monroe County Planning Department</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RocCity Coalition</td>
<td></td>
<td></td>
<td>Many partnerships, not specifically related to active transportation.</td>
</tr>
<tr>
<td>Rochester Area Community Foundation</td>
<td></td>
<td></td>
<td>Support community efforts through grants</td>
</tr>
<tr>
<td>Rochester Bicycling Club (RBC)</td>
<td></td>
<td></td>
<td>Dedicated to promoting cycling for health and well being</td>
</tr>
<tr>
<td>R Community Bikes, Inc.</td>
<td></td>
<td></td>
<td>Bike and helmet giveaways, bike repairs for underserved</td>
</tr>
<tr>
<td>Rochester Cycling Alliance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rochester Institute of Technology (RIT)</td>
<td></td>
<td></td>
<td>Active Transportation Planning course</td>
</tr>
<tr>
<td>The Strong</td>
<td></td>
<td></td>
<td>Continual demand for programs, reaches many families & children</td>
</tr>
<tr>
<td>Town of Brighton Recreation and Parks Department</td>
<td></td>
<td></td>
<td>Annual Bike/Scooter/Blade Rodeo at Brighton Farmer's Market</td>
</tr>
<tr>
<td>University of Rochester</td>
<td></td>
<td></td>
<td>On campus improvements, Active Transportation Symposium</td>
</tr>
<tr>
<td>Wegmans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YMCA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. **Program Effectiveness Measures**
 Program effectiveness measures can be used to determine if the recommended strategies have met their objectives, discover any areas that need change, justify funding, and provide guidance for similar programs. Baseline data is required prior to implementing recommendations. The Town could observe the outcomes or contract with a consultant to measure effectiveness on their behalf. Observable outcomes include: number of crashes, injuries, and fatalities; behaviors; number of citations issued; number of people walking or bicycling; knowledge, opinions and attitudes; changes in organizational activity; traffic volumes; and traffic speeds.

6. **Enforcement**
 The effort to enforce the traffic laws as they relate to bicycle and pedestrian safety should be addressed in an overall, countywide, coordinated enforcement campaign.

Pedestrians. Law enforcement departments can take a leading role in improving public awareness of existing traffic laws and ordinances for motorists (e.g. obeying speed limits, yielding to pedestrians when turning, traffic signal compliance, and obeying drunk-driving laws) and pedestrians (e.g. crossing the street at legal crossings and obeying pedestrian signals). Many local law enforcement agencies have instituted annual pedestrian awareness weeks when they issue tickets to motorists who disregard pedestrian laws and warn pedestrian to follow the laws as well.

Bicyclists. A campaign should be designed keeping in mind the League of American Bicyclists’ recommendation that communities make connections between the bicycling community and law enforcement. Sporadic enforcement will not result in significant improvements to bicyclist behavior and will likely result in resentment of law enforcement personnel. Those behaviors to be targeted should be determined at the outset of the law enforcement campaign. The following behaviors should be targeted:

- Riding at night without lights;
- Violating traffic signals;
- Riding on sidewalks; and
- Riding against traffic on the roadway.

These four behaviors were chosen for two reasons. First, they represent particularly hazardous behaviors which result in many crashes. Secondly, and very importantly, the enforcement of these behaviors is easy to justify to the public. When coupled with (and in fact preceded by) a large-scale education campaign, the public will understand the importance of the campaign and consequently will accept the enforcement activity.

In addition to the need to educate bicyclists, pedestrians, and motorists, some targeted training of law enforcement may also be appropriate. Some questions that could be covered in this training include:

- When is it okay for bicyclists to ‘claim the lane?’
- What width constitutes ‘traffic lanes too narrow for a bicycle and a vehicle to travel safely side-by-side within the lane?’
- Why is it important for a bicyclist to use headlamps and tail lamps?
- Why is riding against traffic such a problem?

By answering these and other similar questions, and discussing what infractions are most likely to lead to bike crashes, cities can encourage law enforcement to help promote bike safety by targeting those behaviors most likely to result in crashes. Some communities educate local law enforcement through the enforcement agency’s standing roll-call meetings, while others send officers to the League of American Bicyclists’ Traffic Skills 101 courses.
Chapter 8: Implementation
The Implementation section includes a discussion of the proposed phasing and implementation of various recommendations, cost estimates associated with selected projects, potential funding sources, and next steps.

A. Priorities and Phasing

The Recommendations section proposes significant number of recommended projects. Table 8.1 summarizes all of these proposed projects and their associated phasing. Each project varies in priority based on the number of people served by the project and the feasibility construction and funding. Each project was ranked according to the following sequencing options:

- **Priority** – Highly beneficial projects that are immediately feasible, or will have the most impact and should therefore be addressed first.
- **Recommended** – Very beneficial projects that will have a significant impact and should be addressed next.
- **Possible** – Beneficial projects that have a less critical time frame, or cannot begin until other projects are completed or issues are addressed.

The projects recommended in BikeWalkBrighton encompass a number of facets of active transportation, and vary significantly in cost, effort, and resources required for successful implementation. The Town of Brighton has a finite amount of resources that can be applied to each project, and will not be able to address every recommendation immediately. Members of the community may feel that the Town is not addressing projects that are of importance to them as quickly as they might like.

Some of the recommendations present opportunities for the average citizen to participate. In some cases, citizens and community groups are already involved in bicycle and pedestrian education, trail development, or facility maintenance. These groups can contribute a valuable service to the community. Not all projects are appropriate for volunteers, of course, but the Town of Brighton should consider utilizing local citizens where possible.

B. Cost Estimates

The expense related to each recommended project will be a critical consideration for the Town of Brighton as they move towards implementation. The costs for each proposed alternative are identified in a generic fashion in Table 6.1: Design Elements for Active Transportation, found in Chapter 6, the Alternatives Toolbox. In addition, several cost estimates were prepared for selected projects. These cost estimates can be found in Appendix I. Preliminary cost estimates were prepared for the following projects:

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Schematic Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brighton Auburn Trail</td>
<td>$797,723</td>
</tr>
<tr>
<td>Brighton Farash Parcel Trail</td>
<td>$823,214</td>
</tr>
<tr>
<td>University of Rochester Hybrid Trail</td>
<td>$359,904</td>
</tr>
<tr>
<td>Elmwood Avenue Side Path</td>
<td>$782,529</td>
</tr>
<tr>
<td>Buckland Park Hybrid Trail</td>
<td>$385,572</td>
</tr>
<tr>
<td>Bicycle Boulevard 1</td>
<td>$22,800</td>
</tr>
<tr>
<td>Bicycle Boulevard 2</td>
<td>$40,250</td>
</tr>
<tr>
<td>Bicycle Boulevard 3</td>
<td>$18,500</td>
</tr>
<tr>
<td>Bicycle Boulevard 4</td>
<td>$12,425</td>
</tr>
<tr>
<td>Bicycle Boulevard 5</td>
<td>$14,075</td>
</tr>
</tbody>
</table>
TABLE 8.1: KEY RECOMMENDATIONS WITH IMPLEMENTATION DETAILS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>MODE(S)</th>
<th>CATEGORY</th>
<th>RECOMMENDATION</th>
<th>DESCRIPTION</th>
<th>PHASING</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Street Recommendations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>On-Street</td>
<td>Priority Intersections 1-3: Twelve Corners</td>
<td>Recommended improvements include: high visibility crosswalks, increased buffer space, green space, contrasting pavement, signage, and pedestrian countdown signals.</td>
<td>Priority</td>
<td>High visibility crosswalks are utilized by MCDOT at signalized intersections, but not by NYSDOT. A consistent crosswalk approach is recommended.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>On-Street</td>
<td>Twelve Corners Pedestrian Zone</td>
<td>In addition to the improvements identified above, other long-term improvements for the 12 Corners were identified. These include: expanded shared-use sidewalks on school grounds with buffer zone, revisions to design of triangular park, and additional street trees.</td>
<td>Possible</td>
<td>Sidewalk and buffer space improvements shown in the figure are Recommended improvements.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>On-Street</td>
<td>Priority Intersection 4: South Clinton & Elmwood Avenues</td>
<td>Recommended improvements include: textured crosswalks, signage and signalization enhancements, advanced/staggered stop bar, and right turn channelized islands.</td>
<td>Priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>On-Street</td>
<td>Priority Intersection 5: East Avenue at Clover Street & Penfield Road</td>
<td>Recommended improvements include: high visibility crosswalks, pedestrian countdown signals, raised island vs. painted channelized area, and relocating stop bar prior to crosswalk.</td>
<td>Priority</td>
<td>Please see high visibility crosswalk note in Item 1.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>On-Street</td>
<td>Priority Intersection 6: Landing Road & Blossom Road</td>
<td>Recommended improvements include: high visibility crosswalks, overhead lighting, ADA compliant pedestrian crossings, and consider an urban compact roundabout for the future.</td>
<td>Priority</td>
<td>Please see high visibility crosswalk note in Item 1.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>On-Street</td>
<td>Priority Intersection 7: Monroe Avenue & Brooklawn Drive</td>
<td>Recommended improvements include: high visibility crosswalks on side roads, textured crosswalks across Monroe, enlarged buffer space, and pedestrian signals on Brooklawn and Torrington approaches.</td>
<td>Priority</td>
<td>Please see high visibility crosswalk note in Item 1.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>On-Street</td>
<td>Priority Intersection 8: Westfall Road & Monroe Avenue</td>
<td>Recommended improvements include: high visibility crosswalks, new crosswalks, new pedestrian countdown crossing signals, advanced stop bars on all approaches, ADA compliant pedestrian crossings, modifications to SW corner, modifications to right turn island to create pedestrian refuge, and signage improvements.</td>
<td>Priority</td>
<td>Please see high visibility crosswalk note in Item 1.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>On-Street</td>
<td>Priority Intersection 9: Monroe Avenue & Clover Street</td>
<td>Recommended improvements include: high visibility crosswalks, raised median pedestrian refuge, pedestrian countdown signals, relocate pedestrian crossing closer to approach end of right turn island.</td>
<td>Priority</td>
<td>Please see high visibility crosswalk note in Item 1.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>On-Street</td>
<td>Priority Intersection 10: West Henrietta & Crittenden Roads</td>
<td>Recommended improvements include: high visibility crosswalks, sidewalks, pedestrian countdown signals with push button actuation/ADA compliant pedestrian crossings.</td>
<td>Priority</td>
<td>Please see high visibility crosswalk note in Item 1.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>On-Street</td>
<td>Monroe Avenue Road Diet</td>
<td>Monroe Avenue was reviewed from Highland Avenue to the Twelve Corners, and from the Twelve Corners to Edgewood Avenue. A road diet is feasible from Highland to Twelve Corners only. The roadway will be reduced from five lanes to three lanes, with sharrows in both directions.</td>
<td>Recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- High visibility crosswalks are utilized by MCDOT at signalized intersections, but not by NYSDOT. A consistent crosswalk approach is recommended.
- Sidewalk and buffer space improvements shown in the figure are Recommended improvements.
- Please see high visibility crosswalk note in Item 1.
TABLE 8.1: KEY RECOMMENDATIONS WITH IMPLEMENTATION DETAILS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>MODE(S)</th>
<th>CATEGORY</th>
<th>RECOMMENDATION</th>
<th>DESCRIPTION</th>
<th>PHASING</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-Street</td>
<td></td>
<td>On-Street Bicycle Facilities: Roadway Restripe Candidates</td>
<td>18% of the study network segments were classified as roadway restripe candidates, which would reduce the existing lane widths to create space for bike lanes. Of all of the on-street bicycle facility recommendations, this is the most achievable within an existing roadway maintenance program.</td>
<td>Priority</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>On-Street</td>
<td></td>
<td>On-Street Bicycle Facilities: Other Recommendations</td>
<td>The remaining study network segments were classified into one of several recommended bicycle facility improvement categories, which include: no recommended improvement (28%), road diet candidate (reduce no. of lanes to create bike lanes) (3%), add or widen paved shoulders (17%), and detailed corridor study needed/shared lane markings candidate (34%).</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>On-Street</td>
<td></td>
<td>Bicycle Boulevard 1: Buckland Park to Highland Avenue</td>
<td>A bicycle boulevard is recommended for 2.75 miles between Buckland Park and Highland Avenue. The route follows Westfall Road to Avalon Drive to Rochester to Rhinecliff Drive to Highland Avenue.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>On-Street</td>
<td></td>
<td>Bicycle Boulevard 2: Erie Canal to Cobbs Hill Park</td>
<td>A bicycle boulevard is recommended for 4.86 miles between the Erie Canal and Cobbs Hill Park. The route follows Edgewood Ave to Meadow Drive to Orchard Drive to Irving Road to Chelmsford Road to Hillside Avenue to Norris Drive.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>On-Street</td>
<td></td>
<td>Bicycle Boulevard 3: Brighton Library/Town Hall to Highland Avenue</td>
<td>A bicycle boulevard is recommended for 2.10 miles between the Brighton Library/Town Hall and Highland Avenue. The route follows Sylvan Road to Warrington Road to Claybourne Road to Hillside Avenue to Highland Avenue.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>On-Street</td>
<td></td>
<td>Bicycle Boulevard 4: Brighton Library/Town Hall to East Avenue</td>
<td>A bicycle boulevard is recommended for 1.50 miles between the Brighton Library/Town Hall and East Avenue, where the City of Rochester has developed bicycle improvements. The route follows Sylvan Road to Oakdale Drive to Highland Avenue to Cobbs Hill Drive to Hillside Ave to the pedestrian bridge over I-490 to Colby Street to East Avenue.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>On-Street</td>
<td></td>
<td>Bicycle Boulevard 5: Twelve Corner Bicycle Bypass</td>
<td>A bicycle boulevard bypass is recommended for 1.70 miles around the busy 12 Corners intersection. The route follows Rhinecliff Drive to Varina Drive to Penarrow Road to Branford Road to Chelmsford Road to Chelmsford Lane to Elmwood Ave to Torrington Drive to Brooklawn Drive along the BCSO property to South Winton Road to Greenwich Lane to Hollywood Ave.</td>
<td>Recommended</td>
<td></td>
</tr>
</tbody>
</table>

On-Street Recommendations, Continued
TABLE 8.1: KEY RECOMMENDATIONS WITH IMPLEMENTATION DETAILS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>MODE(S)</th>
<th>CATEGORY</th>
<th>RECOMMENDATION</th>
<th>DESCRIPTION</th>
<th>PHASING</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Off-Street</td>
<td>Bicycle Facilities at Destinations</td>
<td>Bicycle facilities, such as bicycle racks, bicycle lockers and showers are desirable at many destinations. However, the priority recommendation for the Town is to develop covered bicycle parking at all schools in the Brighton Central School District.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Off-Street</td>
<td>Priority Sidewalk Additions</td>
<td>13.4 miles of priority sidewalk improvements have been identified along West Henrietta Road, Brighton-Henrietta Townline Road, Winton Road and East Avenue, elmwood Ave., and Westfall Road</td>
<td>Priority</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Off-Street</td>
<td>Long-Term Sidewalk Additions</td>
<td>Over time, it is recommended that the Town of Brighton work towards sidewalks on both sides of all roadways.</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Off-Street</td>
<td>Neighborhood Connections</td>
<td>Routes between neighborhoods were identified in order to create safe connections for walking and bicycling.</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Off-Street</td>
<td>Brighton Farash Parcel Trail Concept</td>
<td>This parcel of land between Elmwood Ave and Westfall Road is envisioned as possible Town parkland. Preliminary concepts include a 0.8-mile asphalt trail running N-S and secondary trails connecting E-W.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Off-Street</td>
<td>Brighton Auburn Trail</td>
<td>The Brighton Auburn Trail is recommended for the existing railway corridor. The proposed trail includes a 10’ wide asphalt shared-use trail, resting points every 300 yards, trail banners on existing utility poles, and native shrub plantings.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Off-Street</td>
<td>Buckland Park Hybrid Trail</td>
<td>The Buckland Park Hybrid Trail is recommended to connect the Erie Canalway Trail with Brighton Town Park and Buckland Town Park. The path is a hybrid of existing park trails, a new sidewalk, and a new shared use pathway.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Off-Street</td>
<td>University of Rochester Hybrid Trail</td>
<td>An east-west hybrid trail is recommended to parallel Elmwood Ave and connect the 12 Corners vicinity with the U of R vicinity. The trail utilizes bicycle boulevards on existing pavement, a new shared-use pathway, and the recommended Farash Parcel Trail.</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Off-Street</td>
<td>Elmwood Avenue Side Path</td>
<td>A 2.30-mile side path is recommended along the south side of Elmwood Avenue, between Mt. Hope Avenue and Brighton Town Hall. The pathway would expand the existing 5’ sidewalk to 10’, with a center stripe, a buffer strip, additional street trees, and seating.</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Off-Street</td>
<td>Rochester Multiversity Concept</td>
<td>The Multiversity concept is a multi-faceted proposal to provide enhanced bike and pedestrian connections between the University of Rochester, Rochester Institute of Technology, and Monroe Community College using existing and proposed shared-use trails.</td>
<td>Priority</td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>MODE(S)</td>
<td>CATEGORY</td>
<td>RECOMMENDATION</td>
<td>DESCRIPTION</td>
<td>PHASING</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>28</td>
<td>Programs and Policies</td>
<td>Zoning</td>
<td>Develop/augment zoning code and site planning language, standards and guidance to enhance accessibility and safety for bicyclists and pedestrians.</td>
<td></td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Programs and Policies</td>
<td>Updates to Engineering Standards</td>
<td>The Town of Brighton Minimum Specifications for Dedication was reviewed, and several revisions/updates are recommended in order to make future development more bicycle and pedestrian accessible.</td>
<td></td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Programs and Policies</td>
<td>Outreach and Educational Programs</td>
<td>Many of the recommendations create unfamiliar situations for people using all modes of transportation. Educational programs are recommended for pedestrian, bicyclists and motorists of all age groups.</td>
<td></td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Programs and Policies</td>
<td>Community Designation: Bicycle Friendly</td>
<td>The Bicycle Friendly Community program was created by the League of American Bicyclists and offers the opportunity to be recognized for achievements in supporting bicycling. The program also serves as a benchmark to identify improvements yet to be made in the community.</td>
<td></td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Programs and Policies</td>
<td>Community Designation: Walk Friendly</td>
<td>The Walk Friendly Community program was created by the Pedestrian and Bicycle Information Center, and offers the opportunity to be recognized for achievements in supporting walkability. The program also serves as a benchmark to identify improvements yet to be made in the community.</td>
<td></td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Programs and Policies</td>
<td>Maintenance Programs</td>
<td>Enhanced maintenance is recommended, which includes plowing and sweeping regularly, engaging residents and businesses in clean-up days, and creating neighborhood plantings and gardens.</td>
<td></td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Programs and Policies</td>
<td>Program Effectiveness Measures</td>
<td>In order to track the success of implemented recommendations, the development of program effectiveness measures is recommended. Possible measurements include: number of crashes/injuries/fatalities, traffic speeds, traffic volumes, number of people walking, opinions and attitudes, etc.</td>
<td></td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Programs and Policies</td>
<td>Enforcement</td>
<td>Increased police enforcement is recommended for pedestrian, bicyclist and motorist actions. Enforcement is particularly needed in response to special needs, such as senior citizens and school areas.</td>
<td></td>
<td>Recommended</td>
<td></td>
</tr>
</tbody>
</table>
C. Potential Funding Sources

First and foremost, the Town of Brighton will assume the financial responsibility for active transportation facility improvements as resources allow. The Town has funded, and will continue to fund, sidewalk projects using the following techniques:

- New development projects requesting incentive zoning may be required to install and/or fund sidewalks as an amenity.
- New developments or redevelopments may be required to provide sidewalk easements, and/or construct sidewalks as a condition of Planning Board approval.
- In addition, the Town has established a sidewalk maintenance fund that annually funds sidewalk maintenance projects within existing Town sidewalk districts.
- Finally, Town residents may petition the Town of Brighton and request that a sidewalk district be formed, which would then fund the construction of any sidewalk improvements within the district, as well as their future maintenance.

In general, however, most large sidewalk construction projects are funded by state and federal grants. In addition, the costs associated with constructing the bicycle and pedestrian facilities recommended in this Plan exceed available Town resources.

To help alleviate this deficiency, this section identifies and discusses the numerous sources which can be used to provide monetary assistance for bicycle and pedestrian facilities and programs. Many of these funding sources are available on the federal level, as dictated in the new transportation legislation, Moving Ahead for Progress for the 21st Century (MAP-21). Many of these federal programs are administered by the New York State Department of Transportation (NYSDOT). Additionally, there are other state and regional funding sources which can be used to help achieve the goals and objectives of this Plan. Finally, a number of private funding sources exist which can be used by local governments to implement bicycle- and pedestrian-related programs. The following quick-reference table (Table 8.3) includes all of the funding sources that are described subsequently in greater detail.

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Category</th>
<th>Relevant Project Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Highway Performance Program</td>
<td>Federal</td>
<td>Bicycle transportation and pedestrian walkways (Section 207)</td>
</tr>
<tr>
<td>Surface Transportation Program</td>
<td>Federal</td>
<td>Bicycle transportation and pedestrian walkways; modification of sidewalks to comply with ADA; recreational trail projects; Scenic Byway projects; SRTS projects (Section 207)</td>
</tr>
<tr>
<td>Highway Safety Improvement Program</td>
<td>Federal</td>
<td>Intersection safety improvement, pavement and shoulder widening; bicycle/pedestrian/disabled person safety improvements; traffic calming; installation of yellow-green signs at pedestrian and bicycle crossings and in school zones; transportation safety planning; road safety audits; improvements consistent with FHWA publication “Highway Design Handbook for Older Drivers and Pedestrians”; safety improvements for publicly owned bicycle and pedestrian pathway or trail</td>
</tr>
</tbody>
</table>
Implementation

A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Funding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion Management and Air Quality (CMAQ)</td>
<td>Federal</td>
<td>Bicycle and pedestrian facilities (TA projects)</td>
<td></td>
</tr>
<tr>
<td>Transportation Alternatives (replaced TE, SRTS, Recreational Trails)</td>
<td>Federal</td>
<td>Bicycle and pedestrian facilities; Safe routes for non-drivers projects and systems; preservation of abandoned railway corridors including for pedestrian and bicycle trails; Safe Routes to School infrastructure and non-infrastructure projects: school-based facility, education, and enforcement projects/campaigns</td>
<td></td>
</tr>
<tr>
<td>State and Community Highway Safety Grants</td>
<td>Federal</td>
<td>Safety-related programs and projects (Section 402)</td>
<td></td>
</tr>
<tr>
<td>HUD Community Development Block Grants</td>
<td>Federal</td>
<td>Public facilities and improvements, such as streets, sidewalks, sewers, water systems, community and senior citizen centers, recreational facilities, and greenways</td>
<td></td>
</tr>
<tr>
<td>Urbanized Area Formula Grants, Capital Investment Grants and Loans, and Formula Program for Other than Urbanized Area</td>
<td>Federal (FTA)</td>
<td>Bicycle access to public transportation facilities, shelters and parking facilities, bus bicycle racks</td>
<td></td>
</tr>
<tr>
<td>CHIPS (Consolidated Local, State, and Highway Improvement Program) (www.dot.ny.gov/programs/chips)</td>
<td>State</td>
<td>Bike lanes and wide curb lanes</td>
<td></td>
</tr>
<tr>
<td>The Greater Rochester Health Foundation</td>
<td>Regional</td>
<td>Community health and prevention projects and programs</td>
<td></td>
</tr>
<tr>
<td>Bikes Belong Coalition (www.bikesbelong.org/grants)</td>
<td>Private</td>
<td>Bicycle facilities; end-of-trip facilities; advocacy projects such as Ciclovias</td>
<td></td>
</tr>
<tr>
<td>National Trails Fund (www.americanhiking.org/our-work/national-trails-fund)</td>
<td>Private</td>
<td>Hiking trails</td>
<td></td>
</tr>
<tr>
<td>Robert Wood Johnson Foundation (general) (www.rwjf.org/grants)</td>
<td>Private</td>
<td>Various</td>
<td></td>
</tr>
<tr>
<td>The Conservation Alliance Fund (www.conservationalliance.com/grants/grant_criteria)</td>
<td>Private</td>
<td>Land Use</td>
<td></td>
</tr>
<tr>
<td>Surdna Environment/Community Revitalization (www.surdna.org/grants/grants-overview.html)</td>
<td>Private</td>
<td>Community revitalization and environment, including greenway trail design</td>
<td></td>
</tr>
</tbody>
</table>
1. **Federal Funding Sources: MAP-21 Funded Programs**

With the adoption of Moving Ahead for Progress for the 21st Century (MAP-21), the funding landscape for bicycle and pedestrian projects changed radically. Whereas under SAFTEA-LU (MAP-21’s legislative predecessor), non-motorized transportation facility projects had been eligible under dedicated funding categories that included the Transportation Enhancements Program (TEP), Safe Routes to School (SRTS) and recreational trails. These dedicated programs have been folded into a new category, Transportation Alternatives which recasts, at reduced funding levels, the former TE program. Transportation Alternatives includes TA projects (see list below), previously eligible Safe Routes to School Projects, Recreational Trails projects, and boulevard projects in former Interstate Highway rights of way. Eliminated programs include Safe Routes to School, National Scenic Byways, and the Paul S. Sarbanes Transit in Parks program. The Land and Water Conservation Fund has been funded at a reduced amount through 2013. As before, non-motorized projects must be “principally for transportation, rather than recreation, purposes” and must be designed and located pursuant to the transportation plans required of States and Metropolitan Planning Organizations. The exception to this rule is the Recreational Trails Program (RTP), under which projects may be used for recreational purposes.

Whereas before there were different funding methods for each program, new MAP-21 TA funds will be distributed through grant programs. Fifty percent of the funding will be distributed according to population share. For areas over 200,000, the MPOs will manage the distribution of funds by grant competition. For areas under 200,000, the state will manage the distribution through a competitive grant program. These funds are limited to this use and are not transferable. The remaining fifty percent will be distributed by DOTs, and is transferable to other highway uses.

22 Section 101 (29) Transportation Alternatives.—The term ‘transportation alternatives’ means any of the following activities when carried out as part of any program or project authorized or funded under this title, or as an independent program or project related to surface transportation: (A) Construction, planning, and design of on-road and off-road trail facilities for pedestrians, bicyclists, and other non-motorized forms of transportation, including sidewalks, bicycle infrastructure, pedestrian and bicycle signals, traffic calming techniques, lighting and other safety-related infrastructure, and transportation projects to achieve compliance with the Americans with Disabilities Act of 1990 (42 U.S.C. 12101 et seq.); (B) Construction, planning, and design of infrastructure-related projects and systems that will provide safe routes for non-drivers, including children, older adults, and individuals with disabilities to access daily needs. (C) Conversion and use of abandoned railroad corridors for trails for pedestrians, bicyclists, or other non-motorized transportation users. (D) Construction of turnouts, overlooks, and viewing areas. (E) Community improvement activities, including—(i) inventory, control, or removal of outdoor advertising; (ii) historic preservation and rehabilitation of historic transportation facilities; (iii) vegetation management practices in transportation rights-of-way to improve roadway safety, prevent against invasive species, and provide erosion control; and (iv) archaeological activities relating to impacts from implementation of a transportation project eligible under this title. (F) Any environmental mitigation activity, including pollution prevention and pollution abatement activities an mitigation to—(i) address stormwater management, control, and water pollution prevention or abatement related to highway construction or due to highway runoff, including activities described in sections 133(b)(11), 328(a), and 329; or (ii) reduce vehicle-caused wildlife mortality or to restore and maintain connectivity among terrestrial or aquatic habitats.

23 Authorized in the 2005 SAFETEA-LU bill, Safe Routes to School projects include: (f) Eligible Projects and Activities.—(1) Infrastructure-related projects.—(A) In general.—Amounts apportioned to a State under this section may be used for the planning, design, and construction of infrastructure-related projects that will substantially improve the ability of students to walk and bicycle to school, including sidewalk improvements, traffic calming and speed reduction improvements, pedestrian and bicycle crossing improvements, on-street bicycle facilities, off-street bicycle and pedestrian facilities, secure bicycle parking facilities, and traffic diversion improvements in the vicinity of schools. (B) Location of projects.—Infrastructure-related projects under subparagraph (A) may be carried out on any public road or any bicycle or pedestrian pathway or trail in the vicinity of schools. (2) Non-infrastructure-related activities.—(A) In general.—In addition to projects described in paragraph (1), amounts apportioned to a State under this section may be used for non-infrastructure-related activities to encourage walking and bicycling to school, including public awareness campaigns and outreach to press and community leaders, traffic education and enforcement in the vicinity of schools, student sessions on bicycle and pedestrian safety, health, and environment, and funding for training, volunteers, and managers of safe routes to school programs.
The combination of reduced available funding and increased competition for funds due to the combining of programs may lead to a reduction in bicycle and pedestrian projects being funded.

National Highway Performance Program. Funds may be used to construct bicycle transportation facilities and pedestrian walkways on land adjacent to any highway in the National Highway System, including Interstate highways.

Surface Transportation Program (STP). Funds may be used for the construction of bicycle transportation facilities and pedestrian walkways, as well as many other related facilities (bicycle parking, bike-transit interface, etc.). Transportation Alternative projects are eligible for STP funds. Modifications of public sidewalks to comply with the Americans with Disabilities Act (ADA) are also covered.

Highway Safety Improvement Program. Funds may be used for bicycle- and pedestrian-related highway safety improvement projects, strategies and activities on a public road that are consistent with a State strategic highway safety plan.

Congestion Mitigation and Air Quality (CMAQ) Improvement Program. Established in 1991 and continued in MAP-21, CMAQ will continue to provide funding for projects that help State and local governments meet the requirements of the Clean Air Act. Whether they include attainment or non-attainment areas, States may use CMAQ funds for CMAQ- or STP-eligible projects. Projects must be included in the MPO’s current transportation plan and transportation improvement program (TIP) or state transportation program (STIP) in areas without an MPO.

It is important to note that future additional funding from this program is unlikely to be available in the Genesee-Finger Lakes region and there is a backlog of eligible projects in the region that makes funding for new bicycle and pedestrian projects unlikely within the MAP-21 timeframe (through 2014).

Transportation Alternatives. As mentioned earlier, this new program now provides funding for what used to be funded by three separate programs (Transportation Enhancements, Safe Routes to School, Recreational Trails). In addition to projects in these categories, TA money can be used to fund some road projects. Fifty percent of each state’s funds will be distributed by the DOT, the remainder by the MPOs. There is an opt-out clause that allows up to fifty percent of the funds to be transferred to use in any program without restriction. Eligible activities include:

1. Bicycle and pedestrian facilities;
2. Safe routes for non-drivers projects and systems;
3. Construction of turnouts, overlooks and viewing areas;
4. Vegetation management practices in rights-of-way and other activities under Section 319 (similar to landscaping and beautification);
5. Historic preservation, rehabilitation and operation of historic transportation buildings, structures and facilities;
6. Preservation of abandoned railway corridors including for pedestrian and bicycle trails
7. Inventory, control and removal of outdoor advertising;
8. Archeological activities related to transportation projects; and
9. Any environmental mitigation, including existing uses.

Safety and education activities are no longer specifically funded, but may be allowed under #2.

The Recreational Trails Program is now funded under the TA umbrella. Funds may be used for all kinds of trail projects. Of the funds apportioned to a state, 30 percent must be used for motorized trail uses, 30 percent for non-motorized trail uses, and 40 percent for diverse trail uses (any combination). Examples of trail uses include hiking, bicycling, in-line skating, equestrian use, cross-country skiing, snowmobiling, off-road motorcycling, all-terrain vehicle
riding, four-wheel driving, or using other off-road motorized vehicles. The funding amount will remain the same as in 2009 ($2,204,556). An important provision of the new bill allows the Governor of a state to opt out the recreational trails program if the Governor notifies the U.S. Secretary of Transportation no later than 30 days prior to apportionments being made for any fiscal year.

Highway Safety Section 402 Grants. Generally unchanged from SAFETEA-LU. A State is eligible for these Section 402 grants by submitting a Performance Plan (establishing goals and performance measures for improving highway safety) and a Highway Safety Plan (describing activities to achieve those goals). Research, development, demonstrations, and training to improve highway safety (including bicycle and pedestrian safety) are carried out under the Highway Safety Research and Development (Section 403) Program.

Community Development Block Grants (CDBG). Through the U.S. Department of Housing and Urban Development (HUD), the CDBG program provides eligible metropolitan cities and urban counties (called "entitlement communities") with annual direct grants that they can use to revitalize neighborhoods, expand affordable housing and economic opportunities, and/or improve community facilities and services, principally to benefit low- and moderate-income persons. Eligible activities include building public facilities and improvements, such as streets, sidewalks, sewers, water systems, community and senior citizen centers, and recreational facilities. Several communities have used HUD funds to develop greenways. http://www.hud.gov/offices/cpd/communitydevelopment/programs/

Title 49 USC allows the Urbanized Area Formula Grants (Section 5307), Capital Investment Grants and Loans (Section 5309), and Formula Program for Other than Urbanized Area (Section 5311) transit funds to be used for improving bicycle and pedestrian access to transit facilities and vehicles. Eligible activities include investments in "pedestrian and bicycle access to a mass transportation facility" that establishes or enhances coordination between mass transportation and other transportation.

2. Other Federally Funded Programs

National Park Service Land and Water Conservation Fund (LWCF) Grants. This federal funding source was established in 1965 to provide "close-to-home" parks and recreation opportunities to residents throughout the United States. Money for the fund comes from the sale or lease of nonrenewable resources, primarily federal offshore oil and gas leases, and surplus federal land sales. LWCF grants can be used by communities to build a variety of parks and recreation facilities, including trails and greenways. LWCF funds are distributed by the National Park Service to the states annually. Communities must match LWCF grants with 50 percent of the local project costs through in-kind services or cash. All projects funded by LWCF grants must be used exclusively for recreation purposes, in perpetuity. Projects must be in accordance with each State's Comprehensive Outdoor Recreation Plan.

3. State and Regional Funding Sources

CHIPS (Consolidated Local, State, and Highway Improvement Program). Funds are administered by NYSDOT for local infrastructure projects. Eligible project activities include bike lanes and wide curb lanes (highway resurfacing category); sidewalks, shared use paths, and bike paths within highway right-of-way (highway reconstruction category), and traffic calming installations (traffic control devices category).

The Greater Rochester Health Foundation administers a competitive grant program to implement community health and prevention projects. While grant focus topics and cycles may vary from year to year (the letter of intent deadline for 2013 grants was August 6, 2012), bicycle- and pedestrian-related projects and programs may frequently be well suited for these opportunity grants. http://www.thegrhf.org/
IMPLEMENTATION
A Comprehensive Pedestrian and Bicycle Master Plan for the Town of Brighton, NY

4. Private Funding Sources
There are a number of for and non-profit businesses that offer programs that can be used to fund bicycle and pedestrian related programs and projects. Nationally, groups like Bikes Belong fund projects ranging from facilities to safety programs. Locally, Wegman’s and Excellus have a strong track record of supporting health-based initiatives and may be resources for partnership or sponsorship.

Bikes Belong Coalition. The Bikes Belong Grants Program strives to put more people on bicycles more often by funding important and influential projects that leverage federal funding and build momentum for bicycling in communities across the U.S.” Most of the Bikes Belong grants awarded to government agencies are for trail projects. The program encourages government agencies to team with a local bicycle advocacy group for the application. Bikes Belong Coalition seeks to assist local organizations, agencies, and citizens in developing bicycle facilities projects that will be funded by MAP-21. Bikes Belong Coalition will accept applications for grants of up to $10,000 each (with potential local matches), and will consider successor grants for continuing projects. Grant applications are accepted quarterly. [http://www.bikesbelong.org/grants]

American Hiking Society National Trails Fund. The American Hiking Society’s National Trails Fund is the only privately funded national grants program dedicated solely to hiking trails. National Trails Fund grants have been used for land acquisition, constituency building campaigns, and traditional trail work projects. Since the late 1990s, the American Hiking Society has granted nearly $200,000 to 42 different organizations across the US. Applications are accepted annually with a summer deadline. [http://www.americanhiking.org/NTF.aspx]

The Global ReLeaf Program. The Global ReLeaf Forest Program is American Forests’ education and action program that helps individuals, organizations, agencies, and corporations improve the local and global environment by planting and caring for trees. The program provides funding for planting tree seedlings on public lands, including trailsides. Emphasis is placed on diversifying species, regenerating the optimal ecosystem for the site and implementing the best forest management practices. This grant is for planting tree seedlings on public lands, including along trail rights-of-way. [http://www.americanforests.org/global_releaf/grants/]

The Robert Wood Johnson Foundation. The Robert Wood Johnson Foundation seeks to improve the health and health care of all Americans. One of the primary goals of the Foundation is to “promote healthy communities and lifestyles.” Specifically, the Foundation has an ongoing “Active Living by Design” grant program that promotes the principles of active living, including non-motorized transportation. Other related calls for grant proposals are issued as developed, and multiple communities nationwide have received grants related to promotion of trails and other non-motorized facilities. [http://www.rwjf.org/grants/]

Conservation Alliance. The Conservation Alliance is a group of outdoor businesses that supports efforts to protect specific wild places for their habitat and recreation values. Before applying for funding, an organization must first be nominated by a member company. Members nominate organizations by completing and submitting a nomination form. Each nominated organization is then sent a request for proposal (RFP) instructing them how to submit a full request. Proposals from organizations that are not first nominated will not be accepted. The Conservation Alliance conducts two funding cycles annually. Grant requests should not exceed $35,000 annually. [http://www.conservationalliance.com/]

Surdna Foundation. The Surdna Foundation seeks to foster just and sustainable communities in the United States, communities guided by principles of social justice and distinguished by healthy environments, strong local economies and thriving cultures. [http://www.surdna.org/]

Prepared by edr Companies in association with Sprinkle Consulting and SRF & Associates
D. Next Steps

As a master plan, BikeWalkBrighton does not identify all of the specifics needed to construct every recommended project. Some work still remains to be done. This includes, but is not limited to:

1. Additional study and operational analysis is required for each recommended project prior to implementation.
2. Consultation with - and agreement from - facility owners is required prior to implementation.
3. Access agreements from landowners and/or property acquisition are necessary prior to implementation. Please see Appendix J, Economic Impact of Trails for useful information in talking with landowners.
4. Detailed corridor studies are needed in order to provide on-street bicycle facilities in select corridors. Please see Table 7.1 and Figure 19 for more details.
5. Design development and construction documentation will be necessary for any construction-related projects, such as trails, side paths, and other infrastructure improvements.
6. Regulatory approvals and permitting will be necessary for many of the recommended projects. Environmental permits will be required for trail projects.
7. Some of the program and policy recommendations do not require regulatory approvals. However, changes to Town code will need review and approval by the appropriate municipal boards and would be subject to the SEQR process.